阿蒂亚-弗洛尔猜想:一种公式化,一种证明和推广的策略

A. Daemi, K. Fukaya
{"title":"阿蒂亚-弗洛尔猜想:一种公式化,一种证明和推广的策略","authors":"A. Daemi, K. Fukaya","doi":"10.1090/PSPUM/099/01736","DOIUrl":null,"url":null,"abstract":"Around 1988, Floer introduced two important theories: instanton Floer homology as invariants of 3-manifolds and Lagrangian Floer homology as invariants of pairs of Lagrangians in symplectic manifolds. Soon after that, Atiyah conjectured that the two theories should be related to each other and Lagrangian Floer homology of certain Lagrangians in the moduli space of flat connections on Riemann surfaces should recover instanton Floer homology. However, the space of flat connections on a Riemann surface is singular and the first step to address this conjecture is to make sense of Lagrangian Floer homology on this space. In this note, we formulate a possible approach to resolve this issue. A strategy to construct the desired isomorphism in the Atiyah-Floer conjecture is also sketched. We also use the language of A∞categories to state generalizations of the Atiyah-Floer conjecture.","PeriodicalId":384712,"journal":{"name":"Proceedings of Symposia in Pure\n Mathematics","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Atiyah-Floer conjecture: A formulation, a\\n strategy of proof and generalizations\",\"authors\":\"A. Daemi, K. Fukaya\",\"doi\":\"10.1090/PSPUM/099/01736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Around 1988, Floer introduced two important theories: instanton Floer homology as invariants of 3-manifolds and Lagrangian Floer homology as invariants of pairs of Lagrangians in symplectic manifolds. Soon after that, Atiyah conjectured that the two theories should be related to each other and Lagrangian Floer homology of certain Lagrangians in the moduli space of flat connections on Riemann surfaces should recover instanton Floer homology. However, the space of flat connections on a Riemann surface is singular and the first step to address this conjecture is to make sense of Lagrangian Floer homology on this space. In this note, we formulate a possible approach to resolve this issue. A strategy to construct the desired isomorphism in the Atiyah-Floer conjecture is also sketched. We also use the language of A∞categories to state generalizations of the Atiyah-Floer conjecture.\",\"PeriodicalId\":384712,\"journal\":{\"name\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/PSPUM/099/01736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Symposia in Pure\n Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PSPUM/099/01736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

1988年前后,Floer引入了两个重要的理论:3流形的瞬子Floer同调不变量和辛流形中拉格朗日对的拉格朗日Floer同调不变量。此后不久,Atiyah推测这两个理论应该是相互关联的,在黎曼曲面上平坦连接的模空间中某些拉格朗日量的拉格朗日花同调应该恢复瞬时花同调。然而,黎曼曲面上的平坦连接空间是奇异的,解决这一猜想的第一步是理解这个空间上的拉格朗日花同调。在本文中,我们提出了解决这个问题的可能方法。本文还概述了在Atiyah-Floer猜想中构造期望同构的策略。我们也使用A∞范畴的语言来陈述Atiyah-Floer猜想的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atiyah-Floer conjecture: A formulation, a strategy of proof and generalizations
Around 1988, Floer introduced two important theories: instanton Floer homology as invariants of 3-manifolds and Lagrangian Floer homology as invariants of pairs of Lagrangians in symplectic manifolds. Soon after that, Atiyah conjectured that the two theories should be related to each other and Lagrangian Floer homology of certain Lagrangians in the moduli space of flat connections on Riemann surfaces should recover instanton Floer homology. However, the space of flat connections on a Riemann surface is singular and the first step to address this conjecture is to make sense of Lagrangian Floer homology on this space. In this note, we formulate a possible approach to resolve this issue. A strategy to construct the desired isomorphism in the Atiyah-Floer conjecture is also sketched. We also use the language of A∞categories to state generalizations of the Atiyah-Floer conjecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信