基于优化的广义系统输出反馈控制设计

E. Villarreal, Maxwell C. Jácome, Edpo Rodrigues de Morais, J. V. Queiroz, W. M. Rodrigues
{"title":"基于优化的广义系统输出反馈控制设计","authors":"E. Villarreal, Maxwell C. Jácome, Edpo Rodrigues de Morais, J. V. Queiroz, W. M. Rodrigues","doi":"10.5540/03.2018.006.01.0410","DOIUrl":null,"url":null,"abstract":"This article proposes an algorithm to minimize the Frobenius norm of output feedback matrix of a regular, linear time invariant, continuous time descriptor system. The resulting gain matrix ensures that the closed loop system is impulse-free and the associated non singular matrix is well-conditioned. By characterizing a subset of the set of non singular matrices through a linear matrix inequality, the related optimization is formulated as a semi-definite program.","PeriodicalId":254549,"journal":{"name":"Collection: Applied computer engineering","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OPTIMIZATION BASED OUTPUT FEEDBACK CONTROL DESIGN IN DESCRIPTOR SYSTEMS\",\"authors\":\"E. Villarreal, Maxwell C. Jácome, Edpo Rodrigues de Morais, J. V. Queiroz, W. M. Rodrigues\",\"doi\":\"10.5540/03.2018.006.01.0410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes an algorithm to minimize the Frobenius norm of output feedback matrix of a regular, linear time invariant, continuous time descriptor system. The resulting gain matrix ensures that the closed loop system is impulse-free and the associated non singular matrix is well-conditioned. By characterizing a subset of the set of non singular matrices through a linear matrix inequality, the related optimization is formulated as a semi-definite program.\",\"PeriodicalId\":254549,\"journal\":{\"name\":\"Collection: Applied computer engineering\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collection: Applied computer engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5540/03.2018.006.01.0410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection: Applied computer engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5540/03.2018.006.01.0410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种正则线性时不变连续时间广义系统输出反馈矩阵Frobenius范数的最小化算法。所得到的增益矩阵保证了闭环系统是无脉冲的,并且相关的非奇异矩阵是良条件的。通过线性矩阵不等式刻画非奇异矩阵集合的子集,将相关优化问题表述为半定规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OPTIMIZATION BASED OUTPUT FEEDBACK CONTROL DESIGN IN DESCRIPTOR SYSTEMS
This article proposes an algorithm to minimize the Frobenius norm of output feedback matrix of a regular, linear time invariant, continuous time descriptor system. The resulting gain matrix ensures that the closed loop system is impulse-free and the associated non singular matrix is well-conditioned. By characterizing a subset of the set of non singular matrices through a linear matrix inequality, the related optimization is formulated as a semi-definite program.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信