基于动态预测隐马尔可夫模型的体育视频唤醒内容表示

Joseph Santarcangelo, Xiao-Ping Zhang
{"title":"基于动态预测隐马尔可夫模型的体育视频唤醒内容表示","authors":"Joseph Santarcangelo, Xiao-Ping Zhang","doi":"10.1109/GlobalSIP.2014.7032281","DOIUrl":null,"url":null,"abstract":"This paper develops dynamic prediction hidden Markov models for arousal time curve estimation in sports videos. The method determines the arousal time curve by selecting a state sequence that maximizes the joint probability density function between the states and the arousal time curve. We derive the parameters using the expected maximization algorithm. Experiments were performed on several types of sports videos. Test measures include squared residual error and criteria derived from psychology. The experimental results show that the novel method performed better in estimating the arousal time curve than state of the art linear regression methods on most of the tested sports videos.","PeriodicalId":362306,"journal":{"name":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"80 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Arousal content representation of sports videos using dynamic prediction hidden Markov models\",\"authors\":\"Joseph Santarcangelo, Xiao-Ping Zhang\",\"doi\":\"10.1109/GlobalSIP.2014.7032281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops dynamic prediction hidden Markov models for arousal time curve estimation in sports videos. The method determines the arousal time curve by selecting a state sequence that maximizes the joint probability density function between the states and the arousal time curve. We derive the parameters using the expected maximization algorithm. Experiments were performed on several types of sports videos. Test measures include squared residual error and criteria derived from psychology. The experimental results show that the novel method performed better in estimating the arousal time curve than state of the art linear regression methods on most of the tested sports videos.\",\"PeriodicalId\":362306,\"journal\":{\"name\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"80 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2014.7032281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2014.7032281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文建立了用于运动视频唤醒时间曲线估计的动态预测隐马尔可夫模型。该方法通过选择使状态与唤醒时间曲线之间的联合概率密度函数最大的状态序列来确定唤醒时间曲线。我们使用期望最大化算法推导参数。对几种类型的体育录像进行了实验。测试方法包括残差平方和来自心理学的标准。实验结果表明,在大多数被测试的运动视频中,该方法比现有的线性回归方法在估计唤醒时间曲线方面表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arousal content representation of sports videos using dynamic prediction hidden Markov models
This paper develops dynamic prediction hidden Markov models for arousal time curve estimation in sports videos. The method determines the arousal time curve by selecting a state sequence that maximizes the joint probability density function between the states and the arousal time curve. We derive the parameters using the expected maximization algorithm. Experiments were performed on several types of sports videos. Test measures include squared residual error and criteria derived from psychology. The experimental results show that the novel method performed better in estimating the arousal time curve than state of the art linear regression methods on most of the tested sports videos.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信