一种变频调速异步电动机状态自动监测方法

G. Georgoulas, L. Frosini, I. Tsoumas, T. Loutas, A. Albini
{"title":"一种变频调速异步电动机状态自动监测方法","authors":"G. Georgoulas, L. Frosini, I. Tsoumas, T. Loutas, A. Albini","doi":"10.1109/ICELMACH.2018.8506962","DOIUrl":null,"url":null,"abstract":"This paper proposes an automatic method, for monitoring inverter fed induction motors using external stray flux measurements. The method relies on the marginal power spectrum of the Synchrosqueezed Wavelet Transform for the feature extraction stage and on Principal Component Analysis for the reduction of the high dimensionality of the generated feature vector. For the next stage two approaches were tested: a) a fault detector based on a one-class classifier and b) a fault diagnosis module based on a multiclass classifier. Both of them achieve high accuracies when tested with measurements coming from an experimental set up able to simulate stator short circuits and bearing faults. An explanation of the performance is given by visual inspection of the projection of the feature vectors into a three-dimensional space.","PeriodicalId":292261,"journal":{"name":"2018 XIII International Conference on Electrical Machines (ICEM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Automatic Method for Condition Monitoring of Inverter Fed Induction Motors\",\"authors\":\"G. Georgoulas, L. Frosini, I. Tsoumas, T. Loutas, A. Albini\",\"doi\":\"10.1109/ICELMACH.2018.8506962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an automatic method, for monitoring inverter fed induction motors using external stray flux measurements. The method relies on the marginal power spectrum of the Synchrosqueezed Wavelet Transform for the feature extraction stage and on Principal Component Analysis for the reduction of the high dimensionality of the generated feature vector. For the next stage two approaches were tested: a) a fault detector based on a one-class classifier and b) a fault diagnosis module based on a multiclass classifier. Both of them achieve high accuracies when tested with measurements coming from an experimental set up able to simulate stator short circuits and bearing faults. An explanation of the performance is given by visual inspection of the projection of the feature vectors into a three-dimensional space.\",\"PeriodicalId\":292261,\"journal\":{\"name\":\"2018 XIII International Conference on Electrical Machines (ICEM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 XIII International Conference on Electrical Machines (ICEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICELMACH.2018.8506962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 XIII International Conference on Electrical Machines (ICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICELMACH.2018.8506962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种利用外部杂散磁通测量自动监测变频异步电动机的方法。该方法利用同步压缩小波变换的边际功率谱进行特征提取,利用主成分分析对生成的高维特征向量进行降维处理。下一阶段测试了两种方法:a)基于单类分类器的故障检测器和b)基于多类分类器的故障诊断模块。当使用能够模拟定子短路和轴承故障的实验装置进行测量时,它们都达到了很高的精度。性能的解释是通过视觉检查的投影特征向量到一个三维空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Automatic Method for Condition Monitoring of Inverter Fed Induction Motors
This paper proposes an automatic method, for monitoring inverter fed induction motors using external stray flux measurements. The method relies on the marginal power spectrum of the Synchrosqueezed Wavelet Transform for the feature extraction stage and on Principal Component Analysis for the reduction of the high dimensionality of the generated feature vector. For the next stage two approaches were tested: a) a fault detector based on a one-class classifier and b) a fault diagnosis module based on a multiclass classifier. Both of them achieve high accuracies when tested with measurements coming from an experimental set up able to simulate stator short circuits and bearing faults. An explanation of the performance is given by visual inspection of the projection of the feature vectors into a three-dimensional space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信