有机单层场效应晶体管的硅纳米隙电极工程*

Simon Pfaehler, A. Pathak, Kung-Ching Liao, J. Schwartz, M. Tornow
{"title":"有机单层场效应晶体管的硅纳米隙电极工程*","authors":"Simon Pfaehler, A. Pathak, Kung-Ching Liao, J. Schwartz, M. Tornow","doi":"10.1109/NANO46743.2019.8993870","DOIUrl":null,"url":null,"abstract":"The fabrication and characterization of planar silicon nanogap electrode structures is described in which contact separation ≥ 30 nm was achieved. Starting from highly doped silicon-on-insulator substrates, fabrication is based on precise control of electron-beam lithography and subsequent reactive ion etching (etch rate 3.6 nm/s). A monolayer of an aromatic organophosphonate is then assembled in the etched nanogap. Conductance is greatly improved compared to a device absent the monolayer, and distinct field-effect induced modulation of the conductance is observed. Finite element simulations of the electrostatic potential distribution of the device structure supports its suitability as a three-terminal field effect device.","PeriodicalId":365399,"journal":{"name":"2019 IEEE 19th International Conference on Nanotechnology (IEEE-NANO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Silicon Nanogap Electrode Engineering for Organic Monolayer Field Effect Transistors*\",\"authors\":\"Simon Pfaehler, A. Pathak, Kung-Ching Liao, J. Schwartz, M. Tornow\",\"doi\":\"10.1109/NANO46743.2019.8993870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fabrication and characterization of planar silicon nanogap electrode structures is described in which contact separation ≥ 30 nm was achieved. Starting from highly doped silicon-on-insulator substrates, fabrication is based on precise control of electron-beam lithography and subsequent reactive ion etching (etch rate 3.6 nm/s). A monolayer of an aromatic organophosphonate is then assembled in the etched nanogap. Conductance is greatly improved compared to a device absent the monolayer, and distinct field-effect induced modulation of the conductance is observed. Finite element simulations of the electrostatic potential distribution of the device structure supports its suitability as a three-terminal field effect device.\",\"PeriodicalId\":365399,\"journal\":{\"name\":\"2019 IEEE 19th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 19th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO46743.2019.8993870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO46743.2019.8993870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

描述了平面硅纳米隙电极结构的制备和表征,该结构实现了≥30 nm的接触分离。从高度掺杂的绝缘体上硅衬底开始,制造是基于电子束光刻和随后的反应离子蚀刻(蚀刻速率3.6 nm/s)的精确控制。然后在蚀刻的纳米间隙中组装一层芳香有机膦酸盐。与没有单层的器件相比,电导率大大提高,并且观察到明显的场效应诱导电导率调制。对器件结构静电电位分布的有限元模拟支持了其作为三端场效应器件的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Silicon Nanogap Electrode Engineering for Organic Monolayer Field Effect Transistors*
The fabrication and characterization of planar silicon nanogap electrode structures is described in which contact separation ≥ 30 nm was achieved. Starting from highly doped silicon-on-insulator substrates, fabrication is based on precise control of electron-beam lithography and subsequent reactive ion etching (etch rate 3.6 nm/s). A monolayer of an aromatic organophosphonate is then assembled in the etched nanogap. Conductance is greatly improved compared to a device absent the monolayer, and distinct field-effect induced modulation of the conductance is observed. Finite element simulations of the electrostatic potential distribution of the device structure supports its suitability as a three-terminal field effect device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信