迈向物联网全球联合学习平台

Hamza Safri, Mohamed Mehdi Kandi, Youssef Miloudi, C. Bortolaso, D. Trystram, F. Desprez
{"title":"迈向物联网全球联合学习平台","authors":"Hamza Safri, Mohamed Mehdi Kandi, Youssef Miloudi, C. Bortolaso, D. Trystram, F. Desprez","doi":"10.1109/ICDCS54860.2022.00145","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) is an approach that enables collaborative machine learning (ML) without sharing data over the network. Internet of Things (IoT) and Industry 4.0 are promising areas for FL adoption. Nevertheless, there are several challenges to overcome before the deployment of FL methods in existing large-scale IoT environments. In this paper, we present one step further toward the adoption of FL systems for IoT. More specifically, we developed a prototype that enables distributed ML model deployment, federated task orchestration, and monitoring of system state and model performance. We tested the prototype on a network that contains multiple Raspberry Pi for a use case of modeling the states of conveyors in an airport.","PeriodicalId":225883,"journal":{"name":"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards Developing a Global Federated Learning Platform for IoT\",\"authors\":\"Hamza Safri, Mohamed Mehdi Kandi, Youssef Miloudi, C. Bortolaso, D. Trystram, F. Desprez\",\"doi\":\"10.1109/ICDCS54860.2022.00145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated learning (FL) is an approach that enables collaborative machine learning (ML) without sharing data over the network. Internet of Things (IoT) and Industry 4.0 are promising areas for FL adoption. Nevertheless, there are several challenges to overcome before the deployment of FL methods in existing large-scale IoT environments. In this paper, we present one step further toward the adoption of FL systems for IoT. More specifically, we developed a prototype that enables distributed ML model deployment, federated task orchestration, and monitoring of system state and model performance. We tested the prototype on a network that contains multiple Raspberry Pi for a use case of modeling the states of conveyors in an airport.\",\"PeriodicalId\":225883,\"journal\":{\"name\":\"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS54860.2022.00145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS54860.2022.00145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

联邦学习(FL)是一种无需通过网络共享数据即可实现协作机器学习(ML)的方法。物联网(IoT)和工业4.0是有希望采用FL的领域。然而,在现有的大规模物联网环境中部署FL方法之前,还有几个挑战需要克服。在本文中,我们向物联网采用FL系统进一步迈进了一步。更具体地说,我们开发了一个原型,它支持分布式ML模型部署、联合任务编排,以及监视系统状态和模型性能。我们在一个包含多个树莓派的网络上测试了原型,用于建模机场输送机状态的用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Developing a Global Federated Learning Platform for IoT
Federated learning (FL) is an approach that enables collaborative machine learning (ML) without sharing data over the network. Internet of Things (IoT) and Industry 4.0 are promising areas for FL adoption. Nevertheless, there are several challenges to overcome before the deployment of FL methods in existing large-scale IoT environments. In this paper, we present one step further toward the adoption of FL systems for IoT. More specifically, we developed a prototype that enables distributed ML model deployment, federated task orchestration, and monitoring of system state and model performance. We tested the prototype on a network that contains multiple Raspberry Pi for a use case of modeling the states of conveyors in an airport.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信