机器学习连接语音视听记录的发音数据

R. Trencsényi, L. Czap
{"title":"机器学习连接语音视听记录的发音数据","authors":"R. Trencsényi, L. Czap","doi":"10.1109/CITDS54976.2022.9914284","DOIUrl":null,"url":null,"abstract":"The center of attraction of the present study is the application of neural networks for combining data arising from dynamic audiovisual sources made by ultrasound and magnetic resonance imaging methods, which store image and sound signals recorded during human speech. The objectives of machine learning are tongue contours fitted to the frames of the audiovisual packages by automatic contour tracking algorithms.","PeriodicalId":271992,"journal":{"name":"2022 IEEE 2nd Conference on Information Technology and Data Science (CITDS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Articulatory Data of Audiovisual Records of Speech Connected by Machine Learning\",\"authors\":\"R. Trencsényi, L. Czap\",\"doi\":\"10.1109/CITDS54976.2022.9914284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The center of attraction of the present study is the application of neural networks for combining data arising from dynamic audiovisual sources made by ultrasound and magnetic resonance imaging methods, which store image and sound signals recorded during human speech. The objectives of machine learning are tongue contours fitted to the frames of the audiovisual packages by automatic contour tracking algorithms.\",\"PeriodicalId\":271992,\"journal\":{\"name\":\"2022 IEEE 2nd Conference on Information Technology and Data Science (CITDS)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 2nd Conference on Information Technology and Data Science (CITDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CITDS54976.2022.9914284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd Conference on Information Technology and Data Science (CITDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CITDS54976.2022.9914284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是应用神经网络来结合由超声和磁共振成像方法产生的动态视听源数据,这些数据存储了人类说话过程中记录的图像和声音信号。机器学习的目标是通过自动轮廓跟踪算法将舌头轮廓拟合到视听包的框架上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Articulatory Data of Audiovisual Records of Speech Connected by Machine Learning
The center of attraction of the present study is the application of neural networks for combining data arising from dynamic audiovisual sources made by ultrasound and magnetic resonance imaging methods, which store image and sound signals recorded during human speech. The objectives of machine learning are tongue contours fitted to the frames of the audiovisual packages by automatic contour tracking algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信