{"title":"气泡诱导湍流模型在垂直管内过冷沸腾中的应用","authors":"M. D. Mat, Yuksel Kaplan, O. Ilegbusi","doi":"10.1115/imece1999-1253","DOIUrl":null,"url":null,"abstract":"\n Subcooled boiling of water in a vertical pipe is numerically investigated. The mathematical model involves solution of transport equations for vapor and liquid phase separately. Turbulence model considers the turbulence production and dissipation by the motion of the bubbles. The radial and axial void fractions, temperature and velocity profiles in the pipe are calculated. The estimated results are compared to experimental data available in the literature. It is found that while present study satisfactorily agrees with experimental data in the literature, it improves the prediction at lower void fractions.","PeriodicalId":410594,"journal":{"name":"The Science, Automation, and Control of Material Processes Involving Coupled Transport and Rheology Changes","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of a Bubble-Induced Turbulence Model to Subcooled Boiling in a Vertical Pipe\",\"authors\":\"M. D. Mat, Yuksel Kaplan, O. Ilegbusi\",\"doi\":\"10.1115/imece1999-1253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Subcooled boiling of water in a vertical pipe is numerically investigated. The mathematical model involves solution of transport equations for vapor and liquid phase separately. Turbulence model considers the turbulence production and dissipation by the motion of the bubbles. The radial and axial void fractions, temperature and velocity profiles in the pipe are calculated. The estimated results are compared to experimental data available in the literature. It is found that while present study satisfactorily agrees with experimental data in the literature, it improves the prediction at lower void fractions.\",\"PeriodicalId\":410594,\"journal\":{\"name\":\"The Science, Automation, and Control of Material Processes Involving Coupled Transport and Rheology Changes\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Science, Automation, and Control of Material Processes Involving Coupled Transport and Rheology Changes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece1999-1253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Science, Automation, and Control of Material Processes Involving Coupled Transport and Rheology Changes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1999-1253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of a Bubble-Induced Turbulence Model to Subcooled Boiling in a Vertical Pipe
Subcooled boiling of water in a vertical pipe is numerically investigated. The mathematical model involves solution of transport equations for vapor and liquid phase separately. Turbulence model considers the turbulence production and dissipation by the motion of the bubbles. The radial and axial void fractions, temperature and velocity profiles in the pipe are calculated. The estimated results are compared to experimental data available in the literature. It is found that while present study satisfactorily agrees with experimental data in the literature, it improves the prediction at lower void fractions.