Tsun-Hsuan Wang, Wei Xiao, Makram Chahine, Alexander Amini, Ramin M. Hasani, Daniela Rus
{"title":"基于视觉的端到端驾驶策略中学习稳定性的关注","authors":"Tsun-Hsuan Wang, Wei Xiao, Makram Chahine, Alexander Amini, Ramin M. Hasani, Daniela Rus","doi":"10.48550/arXiv.2304.02733","DOIUrl":null,"url":null,"abstract":"Modern end-to-end learning systems can learn to explicitly infer control from perception. However, it is difficult to guarantee stability and robustness for these systems since they are often exposed to unstructured, high-dimensional, and complex observation spaces (e.g., autonomous driving from a stream of pixel inputs). We propose to leverage control Lyapunov functions (CLFs) to equip end-to-end vision-based policies with stability properties and introduce stability attention in CLFs (att-CLFs) to tackle environmental changes and improve learning flexibility. We also present an uncertainty propagation technique that is tightly integrated into att-CLFs. We demonstrate the effectiveness of att-CLFs via comparison with classical CLFs, model predictive control, and vanilla end-to-end learning in a photo-realistic simulator and on a real full-scale autonomous vehicle.","PeriodicalId":268449,"journal":{"name":"Conference on Learning for Dynamics & Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning Stability Attention in Vision-based End-to-end Driving Policies\",\"authors\":\"Tsun-Hsuan Wang, Wei Xiao, Makram Chahine, Alexander Amini, Ramin M. Hasani, Daniela Rus\",\"doi\":\"10.48550/arXiv.2304.02733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern end-to-end learning systems can learn to explicitly infer control from perception. However, it is difficult to guarantee stability and robustness for these systems since they are often exposed to unstructured, high-dimensional, and complex observation spaces (e.g., autonomous driving from a stream of pixel inputs). We propose to leverage control Lyapunov functions (CLFs) to equip end-to-end vision-based policies with stability properties and introduce stability attention in CLFs (att-CLFs) to tackle environmental changes and improve learning flexibility. We also present an uncertainty propagation technique that is tightly integrated into att-CLFs. We demonstrate the effectiveness of att-CLFs via comparison with classical CLFs, model predictive control, and vanilla end-to-end learning in a photo-realistic simulator and on a real full-scale autonomous vehicle.\",\"PeriodicalId\":268449,\"journal\":{\"name\":\"Conference on Learning for Dynamics & Control\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Learning for Dynamics & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2304.02733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Learning for Dynamics & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.02733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning Stability Attention in Vision-based End-to-end Driving Policies
Modern end-to-end learning systems can learn to explicitly infer control from perception. However, it is difficult to guarantee stability and robustness for these systems since they are often exposed to unstructured, high-dimensional, and complex observation spaces (e.g., autonomous driving from a stream of pixel inputs). We propose to leverage control Lyapunov functions (CLFs) to equip end-to-end vision-based policies with stability properties and introduce stability attention in CLFs (att-CLFs) to tackle environmental changes and improve learning flexibility. We also present an uncertainty propagation technique that is tightly integrated into att-CLFs. We demonstrate the effectiveness of att-CLFs via comparison with classical CLFs, model predictive control, and vanilla end-to-end learning in a photo-realistic simulator and on a real full-scale autonomous vehicle.