基于多通道并行分类器的文本分析方法

Bingliang Lu, Zhihao Lin, Xindong Zhang
{"title":"基于多通道并行分类器的文本分析方法","authors":"Bingliang Lu, Zhihao Lin, Xindong Zhang","doi":"10.1109/icicse55337.2022.9828968","DOIUrl":null,"url":null,"abstract":"In recent years, with the continuous recognition of the value of data, text sentiment analysis in natural language processing has gradually become a research hotspot in the field of artificial intelligence. In this article, we propose a multi-channel parallel algorithm. First, train the entire network by constructing a word embedding layer, map the vocabulary to a higher-dimensional space through word2vec. Then the generated embedding matrix is integrated with the parallel classifier model based on TextCNN, LSTM and Transformer. We use web crawler technology to extract sentiment classification data set from various industries and multiple fields, and conduct comparative experiments on this data set. Experimental results show that the effect of this model is better than that of a single-kernel classifier model.","PeriodicalId":177985,"journal":{"name":"2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Text Analysis Method Based on Multi-channel Parallel Classifier\",\"authors\":\"Bingliang Lu, Zhihao Lin, Xindong Zhang\",\"doi\":\"10.1109/icicse55337.2022.9828968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, with the continuous recognition of the value of data, text sentiment analysis in natural language processing has gradually become a research hotspot in the field of artificial intelligence. In this article, we propose a multi-channel parallel algorithm. First, train the entire network by constructing a word embedding layer, map the vocabulary to a higher-dimensional space through word2vec. Then the generated embedding matrix is integrated with the parallel classifier model based on TextCNN, LSTM and Transformer. We use web crawler technology to extract sentiment classification data set from various industries and multiple fields, and conduct comparative experiments on this data set. Experimental results show that the effect of this model is better than that of a single-kernel classifier model.\",\"PeriodicalId\":177985,\"journal\":{\"name\":\"2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icicse55337.2022.9828968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icicse55337.2022.9828968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,随着人们对数据价值的不断认识,自然语言处理中的文本情感分析逐渐成为人工智能领域的研究热点。在本文中,我们提出了一种多通道并行算法。首先,通过构建词嵌入层来训练整个网络,通过word2vec将词汇表映射到更高维度的空间。然后将生成的嵌入矩阵与基于TextCNN、LSTM和Transformer的并行分类器模型相结合。我们利用网络爬虫技术从各行业、多领域提取情感分类数据集,并对该数据集进行对比实验。实验结果表明,该模型的分类效果优于单核分类器模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text Analysis Method Based on Multi-channel Parallel Classifier
In recent years, with the continuous recognition of the value of data, text sentiment analysis in natural language processing has gradually become a research hotspot in the field of artificial intelligence. In this article, we propose a multi-channel parallel algorithm. First, train the entire network by constructing a word embedding layer, map the vocabulary to a higher-dimensional space through word2vec. Then the generated embedding matrix is integrated with the parallel classifier model based on TextCNN, LSTM and Transformer. We use web crawler technology to extract sentiment classification data set from various industries and multiple fields, and conduct comparative experiments on this data set. Experimental results show that the effect of this model is better than that of a single-kernel classifier model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信