退化条件下基于语音和面部的双峰生物识别身份验证

S. K. Sahoo, S. Prasanna
{"title":"退化条件下基于语音和面部的双峰生物识别身份验证","authors":"S. K. Sahoo, S. Prasanna","doi":"10.1109/NCC.2011.5734743","DOIUrl":null,"url":null,"abstract":"In this work, we present a bimodal biometric system using speech and face features and tested its performance under degraded condition. Speaker verification (SV) system is built using Mel-Frequency Cepstral Coefficients (MFCC) followed by delta and delta-delta for feature extraction and Gaussian Mixture Model (GMM) for modeling. A face verification (FV) system is built using the combination of Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Sum rule is used for the fusion of the biometric scores. The performance of SV system under degraded condition is also checked. All the experimental results are shown upon a subset of IITG-DIT M4 multi-biometric database. The complementary information derived from the speech biometric at training stage is used to further decrease the FV error rate, which is termed as Cohort fed FV system. Finally we propose an improved bimodal person authentication system using SV and Cohort fed FV biometric systems.","PeriodicalId":158295,"journal":{"name":"2011 National Conference on Communications (NCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Bimodal biometric person authentication using speech and face under degraded condition\",\"authors\":\"S. K. Sahoo, S. Prasanna\",\"doi\":\"10.1109/NCC.2011.5734743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present a bimodal biometric system using speech and face features and tested its performance under degraded condition. Speaker verification (SV) system is built using Mel-Frequency Cepstral Coefficients (MFCC) followed by delta and delta-delta for feature extraction and Gaussian Mixture Model (GMM) for modeling. A face verification (FV) system is built using the combination of Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Sum rule is used for the fusion of the biometric scores. The performance of SV system under degraded condition is also checked. All the experimental results are shown upon a subset of IITG-DIT M4 multi-biometric database. The complementary information derived from the speech biometric at training stage is used to further decrease the FV error rate, which is termed as Cohort fed FV system. Finally we propose an improved bimodal person authentication system using SV and Cohort fed FV biometric systems.\",\"PeriodicalId\":158295,\"journal\":{\"name\":\"2011 National Conference on Communications (NCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2011.5734743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2011.5734743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在这项工作中,我们提出了一个使用语音和面部特征的双峰生物识别系统,并测试了其在退化条件下的性能。首先利用Mel-Frequency倒谱系数(MFCC)建立说话人验证(SV)系统,然后利用delta和delta-delta进行特征提取,然后利用高斯混合模型(GMM)进行建模。将主成分分析(PCA)和线性判别分析(LDA)相结合,建立了人脸识别系统。采用求和规则对生物特征分数进行融合。并对SV系统在退化条件下的性能进行了校核。所有实验结果显示在iitg - ditm4多生物特征数据库的一个子集上。利用语音生物特征在训练阶段得到的互补信息进一步降低FV错误率,称为队列馈入FV系统。最后,我们提出了一种改进的双峰身份验证系统,使用SV和队列喂养的FV生物识别系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bimodal biometric person authentication using speech and face under degraded condition
In this work, we present a bimodal biometric system using speech and face features and tested its performance under degraded condition. Speaker verification (SV) system is built using Mel-Frequency Cepstral Coefficients (MFCC) followed by delta and delta-delta for feature extraction and Gaussian Mixture Model (GMM) for modeling. A face verification (FV) system is built using the combination of Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Sum rule is used for the fusion of the biometric scores. The performance of SV system under degraded condition is also checked. All the experimental results are shown upon a subset of IITG-DIT M4 multi-biometric database. The complementary information derived from the speech biometric at training stage is used to further decrease the FV error rate, which is termed as Cohort fed FV system. Finally we propose an improved bimodal person authentication system using SV and Cohort fed FV biometric systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信