非线性最优滤波与跟踪Pid控制在电阻系统中的应用

M. A. Alcorta-Garcia, Mirna Maricela Martínez-Flores, S. Méndez-Díaz, E. Alcorta-García, Luis Arturo Valdéz Hinojosa
{"title":"非线性最优滤波与跟踪Pid控制在电阻系统中的应用","authors":"M. A. Alcorta-Garcia, Mirna Maricela Martínez-Flores, S. Méndez-Díaz, E. Alcorta-García, Luis Arturo Valdéz Hinojosa","doi":"10.1109/ICMEAE.2018.00038","DOIUrl":null,"url":null,"abstract":"Optimal Risk-Sensitive control equations with tracking for first degree polynomial stochastic systems have been obtained and applied to heater system where the actuator is the electrical resistance, achieving the optimal values of the state, for different values of the parameter epsilon which multiplies the white noise in the state equation, which is non linear. Exponential quadratic criterion function to be minimized values are obtained in final time, for some values of the parameter . PID simulation was realized for this heater system. Values of the errors for both (Risk-Sensitive with tracking and PID) are presented in tables showing advantages the Risk-Sensitive control. In addition, in this paper is present the optimal Risk-Sensitive filtering equations applied to the heater system, with both controls and exponential quadratic criterion to be minimized, which contain the quadratic error, for some values of the parameter . Advantage for the system conformed by optimal non linear Risk-Sensitive stochastic control with tracking and non linear stochastic Risk-Sensitive filtering equations is observed through tables","PeriodicalId":138897,"journal":{"name":"2018 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Non-linear Optimal Filter and Control with Tracking vs Pid Applied to an Electric Resistance System\",\"authors\":\"M. A. Alcorta-Garcia, Mirna Maricela Martínez-Flores, S. Méndez-Díaz, E. Alcorta-García, Luis Arturo Valdéz Hinojosa\",\"doi\":\"10.1109/ICMEAE.2018.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal Risk-Sensitive control equations with tracking for first degree polynomial stochastic systems have been obtained and applied to heater system where the actuator is the electrical resistance, achieving the optimal values of the state, for different values of the parameter epsilon which multiplies the white noise in the state equation, which is non linear. Exponential quadratic criterion function to be minimized values are obtained in final time, for some values of the parameter . PID simulation was realized for this heater system. Values of the errors for both (Risk-Sensitive with tracking and PID) are presented in tables showing advantages the Risk-Sensitive control. In addition, in this paper is present the optimal Risk-Sensitive filtering equations applied to the heater system, with both controls and exponential quadratic criterion to be minimized, which contain the quadratic error, for some values of the parameter . Advantage for the system conformed by optimal non linear Risk-Sensitive stochastic control with tracking and non linear stochastic Risk-Sensitive filtering equations is observed through tables\",\"PeriodicalId\":138897,\"journal\":{\"name\":\"2018 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEAE.2018.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEAE.2018.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

得到了一阶多项式随机系统的最优风险敏感跟踪控制方程,并将其应用于以电阻为执行器的加热系统中,得到了状态方程中不同值的参数ε乘以非线性白噪声时的最优状态值。对于参数的某些值,在最终时间内得到了要最小化的指数二次准则函数。对该加热系统进行了PID仿真。两者的误差值(风险敏感跟踪和PID)在表中显示了风险敏感控制的优势。此外,本文还提出了适用于加热器系统的最优风险敏感滤波方程,对于某些参数值,控制和指数二次准则都要最小化,其中包含二次误差。通过表格观察了最优非线性风险敏感随机控制与跟踪和非线性随机风险敏感滤波方程的优越性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-linear Optimal Filter and Control with Tracking vs Pid Applied to an Electric Resistance System
Optimal Risk-Sensitive control equations with tracking for first degree polynomial stochastic systems have been obtained and applied to heater system where the actuator is the electrical resistance, achieving the optimal values of the state, for different values of the parameter epsilon which multiplies the white noise in the state equation, which is non linear. Exponential quadratic criterion function to be minimized values are obtained in final time, for some values of the parameter . PID simulation was realized for this heater system. Values of the errors for both (Risk-Sensitive with tracking and PID) are presented in tables showing advantages the Risk-Sensitive control. In addition, in this paper is present the optimal Risk-Sensitive filtering equations applied to the heater system, with both controls and exponential quadratic criterion to be minimized, which contain the quadratic error, for some values of the parameter . Advantage for the system conformed by optimal non linear Risk-Sensitive stochastic control with tracking and non linear stochastic Risk-Sensitive filtering equations is observed through tables
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信