基于InceptionV3和ResNet50深度学习架构的COVID-19患者分类

M. Raihan, M. Suryanegara
{"title":"基于InceptionV3和ResNet50深度学习架构的COVID-19患者分类","authors":"M. Raihan, M. Suryanegara","doi":"10.1109/ic2ie53219.2021.9649255","DOIUrl":null,"url":null,"abstract":"This paper aims to compare the deep learning Convolutional Neural Network (CNN) model for a case study of 3 classes chest x-ray classification of patients with \"COVID-19\", \"pneumonia\", and \"normal people\" using 2 architectures, namely InceptionV3 and ResNet50. This model was created using the GoogleColab platform with the Python programming language. This comparison aims to find the best results using 4 evaluation metrics and several scenarios for dividing the number of datasets used for training and validation. The evaluation metrics used include accuracy, precision, recall, and F1-score. The best accuracy is generated on a model with the ResNet50 architecture with a training accuracy value of 98.62% and accuracy validation of 96.53%. While in the InceptionV3 architecture, the resulting value for training accuracy is 96.13% and accuracy validation is 91.52%.","PeriodicalId":178443,"journal":{"name":"2021 4th International Conference of Computer and Informatics Engineering (IC2IE)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification of COVID-19 Patients Using Deep Learning Architecture of InceptionV3 and ResNet50\",\"authors\":\"M. Raihan, M. Suryanegara\",\"doi\":\"10.1109/ic2ie53219.2021.9649255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to compare the deep learning Convolutional Neural Network (CNN) model for a case study of 3 classes chest x-ray classification of patients with \\\"COVID-19\\\", \\\"pneumonia\\\", and \\\"normal people\\\" using 2 architectures, namely InceptionV3 and ResNet50. This model was created using the GoogleColab platform with the Python programming language. This comparison aims to find the best results using 4 evaluation metrics and several scenarios for dividing the number of datasets used for training and validation. The evaluation metrics used include accuracy, precision, recall, and F1-score. The best accuracy is generated on a model with the ResNet50 architecture with a training accuracy value of 98.62% and accuracy validation of 96.53%. While in the InceptionV3 architecture, the resulting value for training accuracy is 96.13% and accuracy validation is 91.52%.\",\"PeriodicalId\":178443,\"journal\":{\"name\":\"2021 4th International Conference of Computer and Informatics Engineering (IC2IE)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 4th International Conference of Computer and Informatics Engineering (IC2IE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ic2ie53219.2021.9649255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference of Computer and Informatics Engineering (IC2IE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ic2ie53219.2021.9649255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

以“COVID-19”、“肺炎”、“正常人”3类胸片患者为例,采用InceptionV3和ResNet50两种架构,对比深度学习卷积神经网络(CNN)模型。该模型是使用GoogleColab平台和Python编程语言创建的。这个比较旨在使用4个评估指标和几个场景来划分用于训练和验证的数据集数量,从而找到最佳结果。使用的评估指标包括准确性、精密度、召回率和f1分数。在ResNet50架构的模型上生成的准确率最高,训练准确率值为98.62%,准确率验证值为96.53%。而在InceptionV3架构中,训练准确度的结果值为96.13%,准确度验证值为91.52%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of COVID-19 Patients Using Deep Learning Architecture of InceptionV3 and ResNet50
This paper aims to compare the deep learning Convolutional Neural Network (CNN) model for a case study of 3 classes chest x-ray classification of patients with "COVID-19", "pneumonia", and "normal people" using 2 architectures, namely InceptionV3 and ResNet50. This model was created using the GoogleColab platform with the Python programming language. This comparison aims to find the best results using 4 evaluation metrics and several scenarios for dividing the number of datasets used for training and validation. The evaluation metrics used include accuracy, precision, recall, and F1-score. The best accuracy is generated on a model with the ResNet50 architecture with a training accuracy value of 98.62% and accuracy validation of 96.53%. While in the InceptionV3 architecture, the resulting value for training accuracy is 96.13% and accuracy validation is 91.52%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信