Ambedkar Dukkipati, Narasimha Murty Musti, S. Bhatnagar
{"title":"非扩展框架下Kullback-Leibler交叉熵最小化的性质","authors":"Ambedkar Dukkipati, Narasimha Murty Musti, S. Bhatnagar","doi":"10.1109/ISIT.2005.1523773","DOIUrl":null,"url":null,"abstract":"Kullback-Leibler cross-entropy has unique properties in cases involving distributions resulting from cross-entropy minimization. Nonextensive entropy (Tsallis entropy), which is a one-parameter generalization of Shannon entropy, is proposed to study certain class of physical systems. Thermostatistics based on Tsallis entropy is termed as nonextensive statistics or Tsallis statistics. Previously, Kullback-Leibler cross-entropy has been generalized and studied in this framework. In this paper we study properties of generalized cross-entropy minimization and present some differences with the classical case. In the representation of such a minimum cross-entropy distribution, we highlight the use of the q-product, an operator that has been recently introduced, to derive the mathematical structure behind the Tsallis statistics. One of our main results is the generalization of the triangle equality of cross-entropy minimization, in nonextensive framework","PeriodicalId":166130,"journal":{"name":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Properties of Kullback-Leibler cross-entropy minimization in nonextensive framework\",\"authors\":\"Ambedkar Dukkipati, Narasimha Murty Musti, S. Bhatnagar\",\"doi\":\"10.1109/ISIT.2005.1523773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kullback-Leibler cross-entropy has unique properties in cases involving distributions resulting from cross-entropy minimization. Nonextensive entropy (Tsallis entropy), which is a one-parameter generalization of Shannon entropy, is proposed to study certain class of physical systems. Thermostatistics based on Tsallis entropy is termed as nonextensive statistics or Tsallis statistics. Previously, Kullback-Leibler cross-entropy has been generalized and studied in this framework. In this paper we study properties of generalized cross-entropy minimization and present some differences with the classical case. In the representation of such a minimum cross-entropy distribution, we highlight the use of the q-product, an operator that has been recently introduced, to derive the mathematical structure behind the Tsallis statistics. One of our main results is the generalization of the triangle equality of cross-entropy minimization, in nonextensive framework\",\"PeriodicalId\":166130,\"journal\":{\"name\":\"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2005.1523773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2005.1523773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Properties of Kullback-Leibler cross-entropy minimization in nonextensive framework
Kullback-Leibler cross-entropy has unique properties in cases involving distributions resulting from cross-entropy minimization. Nonextensive entropy (Tsallis entropy), which is a one-parameter generalization of Shannon entropy, is proposed to study certain class of physical systems. Thermostatistics based on Tsallis entropy is termed as nonextensive statistics or Tsallis statistics. Previously, Kullback-Leibler cross-entropy has been generalized and studied in this framework. In this paper we study properties of generalized cross-entropy minimization and present some differences with the classical case. In the representation of such a minimum cross-entropy distribution, we highlight the use of the q-product, an operator that has been recently introduced, to derive the mathematical structure behind the Tsallis statistics. One of our main results is the generalization of the triangle equality of cross-entropy minimization, in nonextensive framework