P. Bolzoni, S. Helmer, Kevin Wellenzohn, J. Gamper, Periklis Andritsos
{"title":"有效的行程规划与类别约束","authors":"P. Bolzoni, S. Helmer, Kevin Wellenzohn, J. Gamper, Periklis Andritsos","doi":"10.1145/2666310.2666411","DOIUrl":null,"url":null,"abstract":"We propose a more realistic approach to trip planning for tourist applications by adding category information to points of interest (POIs). This makes it easier for tourists to formulate their preferences by stating constraints on categories rather than individual POIs. However, solving this problem is not just a matter of extending existing algorithms. In our approach we exploit the fact that POIs are usually not evenly distributed but tend to appear in clusters. We develop a group of efficient algorithms based on clustering with guaranteed theoretical bounds. We also evaluate our algorithms experimentally, using real-world data sets, showing that in practice the results are better than the theoretical guarantees and very close to the optimal solution.","PeriodicalId":153031,"journal":{"name":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Efficient itinerary planning with category constraints\",\"authors\":\"P. Bolzoni, S. Helmer, Kevin Wellenzohn, J. Gamper, Periklis Andritsos\",\"doi\":\"10.1145/2666310.2666411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a more realistic approach to trip planning for tourist applications by adding category information to points of interest (POIs). This makes it easier for tourists to formulate their preferences by stating constraints on categories rather than individual POIs. However, solving this problem is not just a matter of extending existing algorithms. In our approach we exploit the fact that POIs are usually not evenly distributed but tend to appear in clusters. We develop a group of efficient algorithms based on clustering with guaranteed theoretical bounds. We also evaluate our algorithms experimentally, using real-world data sets, showing that in practice the results are better than the theoretical guarantees and very close to the optimal solution.\",\"PeriodicalId\":153031,\"journal\":{\"name\":\"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2666310.2666411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2666310.2666411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient itinerary planning with category constraints
We propose a more realistic approach to trip planning for tourist applications by adding category information to points of interest (POIs). This makes it easier for tourists to formulate their preferences by stating constraints on categories rather than individual POIs. However, solving this problem is not just a matter of extending existing algorithms. In our approach we exploit the fact that POIs are usually not evenly distributed but tend to appear in clusters. We develop a group of efficient algorithms based on clustering with guaranteed theoretical bounds. We also evaluate our algorithms experimentally, using real-world data sets, showing that in practice the results are better than the theoretical guarantees and very close to the optimal solution.