有效的行程规划与类别约束

P. Bolzoni, S. Helmer, Kevin Wellenzohn, J. Gamper, Periklis Andritsos
{"title":"有效的行程规划与类别约束","authors":"P. Bolzoni, S. Helmer, Kevin Wellenzohn, J. Gamper, Periklis Andritsos","doi":"10.1145/2666310.2666411","DOIUrl":null,"url":null,"abstract":"We propose a more realistic approach to trip planning for tourist applications by adding category information to points of interest (POIs). This makes it easier for tourists to formulate their preferences by stating constraints on categories rather than individual POIs. However, solving this problem is not just a matter of extending existing algorithms. In our approach we exploit the fact that POIs are usually not evenly distributed but tend to appear in clusters. We develop a group of efficient algorithms based on clustering with guaranteed theoretical bounds. We also evaluate our algorithms experimentally, using real-world data sets, showing that in practice the results are better than the theoretical guarantees and very close to the optimal solution.","PeriodicalId":153031,"journal":{"name":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Efficient itinerary planning with category constraints\",\"authors\":\"P. Bolzoni, S. Helmer, Kevin Wellenzohn, J. Gamper, Periklis Andritsos\",\"doi\":\"10.1145/2666310.2666411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a more realistic approach to trip planning for tourist applications by adding category information to points of interest (POIs). This makes it easier for tourists to formulate their preferences by stating constraints on categories rather than individual POIs. However, solving this problem is not just a matter of extending existing algorithms. In our approach we exploit the fact that POIs are usually not evenly distributed but tend to appear in clusters. We develop a group of efficient algorithms based on clustering with guaranteed theoretical bounds. We also evaluate our algorithms experimentally, using real-world data sets, showing that in practice the results are better than the theoretical guarantees and very close to the optimal solution.\",\"PeriodicalId\":153031,\"journal\":{\"name\":\"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2666310.2666411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2666310.2666411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

我们提出了一种更现实的旅游应用程序旅行规划方法,即在兴趣点(poi)中添加类别信息。这使得游客更容易通过说明类别限制而不是单独的poi来制定他们的偏好。然而,解决这个问题不仅仅是扩展现有算法的问题。在我们的方法中,我们利用poi通常不是均匀分布的事实,而是倾向于出现在集群中。我们开发了一组基于保证理论界聚类的高效算法。我们还通过实验评估了我们的算法,使用真实世界的数据集,表明在实践中结果比理论保证更好,并且非常接近最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient itinerary planning with category constraints
We propose a more realistic approach to trip planning for tourist applications by adding category information to points of interest (POIs). This makes it easier for tourists to formulate their preferences by stating constraints on categories rather than individual POIs. However, solving this problem is not just a matter of extending existing algorithms. In our approach we exploit the fact that POIs are usually not evenly distributed but tend to appear in clusters. We develop a group of efficient algorithms based on clustering with guaranteed theoretical bounds. We also evaluate our algorithms experimentally, using real-world data sets, showing that in practice the results are better than the theoretical guarantees and very close to the optimal solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信