astroML简介:天体物理学的机器学习

J. Vanderplas, A. Connolly, Ž. Ivezić, Alexander G. Gray
{"title":"astroML简介:天体物理学的机器学习","authors":"J. Vanderplas, A. Connolly, Ž. Ivezić, Alexander G. Gray","doi":"10.1109/CIDU.2012.6382200","DOIUrl":null,"url":null,"abstract":"Astronomy and astrophysics are witnessing dramatic increases in data volume as detectors, telescopes and computers become ever more powerful. During the last decade, sky surveys across the electromagnetic spectrum have collected hundreds of terabytes of astronomical data for hundreds of millions of sources. Over the next decade, the data volume will enter the petabyte domain, and provide accurate measurements for billions of sources. Astronomy and physics students are not traditionally trained to handle such voluminous and complex data sets. In this paper we describe astroML; an initiative, based on python and scikit-learn, to develop a compendium of machine learning tools designed to address the statistical needs of the next generation of students and astronomical surveys. We introduce astroML and present a number of example applications that are enabled by this package.","PeriodicalId":270712,"journal":{"name":"2012 Conference on Intelligent Data Understanding","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"177","resultStr":"{\"title\":\"Introduction to astroML: Machine learning for astrophysics\",\"authors\":\"J. Vanderplas, A. Connolly, Ž. Ivezić, Alexander G. Gray\",\"doi\":\"10.1109/CIDU.2012.6382200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Astronomy and astrophysics are witnessing dramatic increases in data volume as detectors, telescopes and computers become ever more powerful. During the last decade, sky surveys across the electromagnetic spectrum have collected hundreds of terabytes of astronomical data for hundreds of millions of sources. Over the next decade, the data volume will enter the petabyte domain, and provide accurate measurements for billions of sources. Astronomy and physics students are not traditionally trained to handle such voluminous and complex data sets. In this paper we describe astroML; an initiative, based on python and scikit-learn, to develop a compendium of machine learning tools designed to address the statistical needs of the next generation of students and astronomical surveys. We introduce astroML and present a number of example applications that are enabled by this package.\",\"PeriodicalId\":270712,\"journal\":{\"name\":\"2012 Conference on Intelligent Data Understanding\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"177\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Conference on Intelligent Data Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIDU.2012.6382200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Conference on Intelligent Data Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDU.2012.6382200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 177

摘要

随着探测器、望远镜和计算机变得越来越强大,天文学和天体物理学的数据量正在急剧增加。在过去的十年中,通过电磁频谱的天空调查已经收集了数亿个来源的数百tb的天文数据。在未来十年,数据量将进入拍字节领域,并为数十亿个来源提供准确的测量。传统上,天文学和物理学的学生并没有接受过处理如此庞大而复杂的数据集的训练。本文描述了astroML;一项基于python和scikit-learn的倡议,旨在开发机器学习工具纲要,旨在满足下一代学生和天文调查的统计需求。我们介绍了astroML,并给出了这个包支持的一些示例应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Introduction to astroML: Machine learning for astrophysics
Astronomy and astrophysics are witnessing dramatic increases in data volume as detectors, telescopes and computers become ever more powerful. During the last decade, sky surveys across the electromagnetic spectrum have collected hundreds of terabytes of astronomical data for hundreds of millions of sources. Over the next decade, the data volume will enter the petabyte domain, and provide accurate measurements for billions of sources. Astronomy and physics students are not traditionally trained to handle such voluminous and complex data sets. In this paper we describe astroML; an initiative, based on python and scikit-learn, to develop a compendium of machine learning tools designed to address the statistical needs of the next generation of students and astronomical surveys. We introduce astroML and present a number of example applications that are enabled by this package.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信