时间顺序计算:异步元胞自动机

AUTOMATA & JAC Pub Date : 2012-08-13 DOI:10.4204/EPTCS.90.14
M. Vielhaber
{"title":"时间顺序计算:异步元胞自动机","authors":"M. Vielhaber","doi":"10.4204/EPTCS.90.14","DOIUrl":null,"url":null,"abstract":"Our concern is the behaviour of the elementary cellular automata with state set 0,1 over the cell set Z/nZ (one-dimensional finite wrap-around case), under all possible update rules (asynchronicity). \nOver the torus Z/nZ (n<= 11),we will see that the ECA with Wolfram rule 57 maps any v in F_2^n to any w in F_2^n, varying the update rule. \nWe furthermore show that all even (element of the alternating group) bijective functions on the set F_2^n = 0,...,2^n-1, can be computed by ECA57, by iterating it a sufficient number of times with varying update rules, at least for n <= 10. We characterize the non-bijective functions computable by asynchronous rules.","PeriodicalId":415843,"journal":{"name":"AUTOMATA & JAC","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Computing by Temporal Order: Asynchronous Cellular Automata\",\"authors\":\"M. Vielhaber\",\"doi\":\"10.4204/EPTCS.90.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our concern is the behaviour of the elementary cellular automata with state set 0,1 over the cell set Z/nZ (one-dimensional finite wrap-around case), under all possible update rules (asynchronicity). \\nOver the torus Z/nZ (n<= 11),we will see that the ECA with Wolfram rule 57 maps any v in F_2^n to any w in F_2^n, varying the update rule. \\nWe furthermore show that all even (element of the alternating group) bijective functions on the set F_2^n = 0,...,2^n-1, can be computed by ECA57, by iterating it a sufficient number of times with varying update rules, at least for n <= 10. We characterize the non-bijective functions computable by asynchronous rules.\",\"PeriodicalId\":415843,\"journal\":{\"name\":\"AUTOMATA & JAC\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AUTOMATA & JAC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.90.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATA & JAC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.90.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们关注的是在所有可能的更新规则(异步性)下,状态集为0,1的基本元胞自动机在单元集Z/nZ(一维有限环绕情况)上的行为。在环面Z/nZ (n<= 11)上,我们将看到具有Wolfram规则57的ECA将F_2^n中的任何v映射到F_2^n中的任何w,改变更新规则。进一步证明了集合F_2^n = 0,…上的所有偶(交替群的元素)双射函数。,2^n-1,可以通过ECA57计算,通过使用不同的更新规则迭代它足够的次数,至少对于n <= 10。我们刻画了可由异步规则计算的非双射函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing by Temporal Order: Asynchronous Cellular Automata
Our concern is the behaviour of the elementary cellular automata with state set 0,1 over the cell set Z/nZ (one-dimensional finite wrap-around case), under all possible update rules (asynchronicity). Over the torus Z/nZ (n<= 11),we will see that the ECA with Wolfram rule 57 maps any v in F_2^n to any w in F_2^n, varying the update rule. We furthermore show that all even (element of the alternating group) bijective functions on the set F_2^n = 0,...,2^n-1, can be computed by ECA57, by iterating it a sufficient number of times with varying update rules, at least for n <= 10. We characterize the non-bijective functions computable by asynchronous rules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信