通过分离加密实现协议独立性

J. Guttman, F. Javier, Thayer Fábrega
{"title":"通过分离加密实现协议独立性","authors":"J. Guttman, F. Javier, Thayer Fábrega","doi":"10.1109/CSFW.2000.856923","DOIUrl":null,"url":null,"abstract":"One protocol (called the primary protocol) is independent of other protocols (jointly called the secondary protocol) if the question whether the primary protocol achieves a security goal never depends on whether the secondary protocol is in use. We use multiprotocol strand spaces to prove that two cryptographic protocols are independent if they use encryption in non-overlapping ways. This theorem applies even if the protocols share public key certificates and secret key \"tickets\". We use the method of Guttman et al. (2000) to study penetrator paths, namely sequences of penetrator actions connecting regular nodes (message transmissions or receptions) in the two protocols. Of special interest are inbound linking paths, which lead from a message transmission in the secondary protocol to a message reception in the primary protocol. We show that bundles can be modified to remove all inbound linking paths, if encryption does not overlap in the two protocols. The resulting bundle does not depend on any activity of the secondary protocol. We illustrate this method using the Neuman-Stubblebine protocol as an example.","PeriodicalId":377637,"journal":{"name":"Proceedings 13th IEEE Computer Security Foundations Workshop. CSFW-13","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"141","resultStr":"{\"title\":\"Protocol independence through disjoint encryption\",\"authors\":\"J. Guttman, F. Javier, Thayer Fábrega\",\"doi\":\"10.1109/CSFW.2000.856923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One protocol (called the primary protocol) is independent of other protocols (jointly called the secondary protocol) if the question whether the primary protocol achieves a security goal never depends on whether the secondary protocol is in use. We use multiprotocol strand spaces to prove that two cryptographic protocols are independent if they use encryption in non-overlapping ways. This theorem applies even if the protocols share public key certificates and secret key \\\"tickets\\\". We use the method of Guttman et al. (2000) to study penetrator paths, namely sequences of penetrator actions connecting regular nodes (message transmissions or receptions) in the two protocols. Of special interest are inbound linking paths, which lead from a message transmission in the secondary protocol to a message reception in the primary protocol. We show that bundles can be modified to remove all inbound linking paths, if encryption does not overlap in the two protocols. The resulting bundle does not depend on any activity of the secondary protocol. We illustrate this method using the Neuman-Stubblebine protocol as an example.\",\"PeriodicalId\":377637,\"journal\":{\"name\":\"Proceedings 13th IEEE Computer Security Foundations Workshop. CSFW-13\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"141\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 13th IEEE Computer Security Foundations Workshop. CSFW-13\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSFW.2000.856923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 13th IEEE Computer Security Foundations Workshop. CSFW-13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSFW.2000.856923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 141

摘要

一个协议(称为主协议)独立于其他协议(联合称为辅助协议),如果主要协议是否达到安全目标的问题不依赖于次要协议是否被使用。我们利用多协议链空间证明了如果两个加密协议以非重叠的方式使用加密,那么它们是独立的。即使协议共享公钥证书和密钥“票证”,该定理也适用。我们使用Guttman等人(2000)的方法来研究渗透器路径,即两个协议中连接规则节点(消息传输或接收)的渗透器动作序列。特别令人感兴趣的是入站链接路径,它从辅助协议中的消息传输引导到主协议中的消息接收。我们将展示,如果两个协议中的加密没有重叠,可以修改bundle以删除所有入站链接路径。生成的bundle不依赖于辅助协议的任何活动。我们以Neuman-Stubblebine协议为例说明了这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protocol independence through disjoint encryption
One protocol (called the primary protocol) is independent of other protocols (jointly called the secondary protocol) if the question whether the primary protocol achieves a security goal never depends on whether the secondary protocol is in use. We use multiprotocol strand spaces to prove that two cryptographic protocols are independent if they use encryption in non-overlapping ways. This theorem applies even if the protocols share public key certificates and secret key "tickets". We use the method of Guttman et al. (2000) to study penetrator paths, namely sequences of penetrator actions connecting regular nodes (message transmissions or receptions) in the two protocols. Of special interest are inbound linking paths, which lead from a message transmission in the secondary protocol to a message reception in the primary protocol. We show that bundles can be modified to remove all inbound linking paths, if encryption does not overlap in the two protocols. The resulting bundle does not depend on any activity of the secondary protocol. We illustrate this method using the Neuman-Stubblebine protocol as an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信