{"title":"1.79-连续评审单源损失销售和双源库存模型的近似算法","authors":"Linwei Xin","doi":"10.2139/ssrn.3484315","DOIUrl":null,"url":null,"abstract":"Stochastic inventory systems with lead times are often challenging to optimize, including single-sourcing lost-sales and dual-sourcing systems. Recent numerical results suggest that capped policies demonstrate superior performance over existing heuristics. However, the superior performance lacks a theoretical foundation. In “1.79-Approximation Algorithms for Continuous Review Single-Sourcing Lost-Sales and Dual-Sourcing Inventory Models,” the author provides a theoretical foundation for this phenomenon in two classical inventory models. First, in a continuous review lost-sales model with lead times and Poisson demand, he proves that a capped base-stock policy has a worst-case performance guarantee of 1.79 by conducting an asymptotic analysis under a large penalty cost and lead time. Second, in a more complex continuous review dual-sourcing model with general lead times and Poisson demand, he proves that a similar capped dual-index policy has a worst-case performance guarantee of 1.79 under large lead time and ordering cost differences. The results provide a deeper understanding of the superior numerical performance of capped policies and present a new approach to proving worst-case performance guarantees of simple policies in hard inventory problems.","PeriodicalId":224732,"journal":{"name":"Chicago Booth Research Paper Series","volume":"151 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"1.79-Approximation Algorithms for Continuous Review Single-Sourcing Lost-Sales and Dual-Sourcing Inventory Models\",\"authors\":\"Linwei Xin\",\"doi\":\"10.2139/ssrn.3484315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stochastic inventory systems with lead times are often challenging to optimize, including single-sourcing lost-sales and dual-sourcing systems. Recent numerical results suggest that capped policies demonstrate superior performance over existing heuristics. However, the superior performance lacks a theoretical foundation. In “1.79-Approximation Algorithms for Continuous Review Single-Sourcing Lost-Sales and Dual-Sourcing Inventory Models,” the author provides a theoretical foundation for this phenomenon in two classical inventory models. First, in a continuous review lost-sales model with lead times and Poisson demand, he proves that a capped base-stock policy has a worst-case performance guarantee of 1.79 by conducting an asymptotic analysis under a large penalty cost and lead time. Second, in a more complex continuous review dual-sourcing model with general lead times and Poisson demand, he proves that a similar capped dual-index policy has a worst-case performance guarantee of 1.79 under large lead time and ordering cost differences. The results provide a deeper understanding of the superior numerical performance of capped policies and present a new approach to proving worst-case performance guarantees of simple policies in hard inventory problems.\",\"PeriodicalId\":224732,\"journal\":{\"name\":\"Chicago Booth Research Paper Series\",\"volume\":\"151 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chicago Booth Research Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3484315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chicago Booth Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3484315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
1.79-Approximation Algorithms for Continuous Review Single-Sourcing Lost-Sales and Dual-Sourcing Inventory Models
Stochastic inventory systems with lead times are often challenging to optimize, including single-sourcing lost-sales and dual-sourcing systems. Recent numerical results suggest that capped policies demonstrate superior performance over existing heuristics. However, the superior performance lacks a theoretical foundation. In “1.79-Approximation Algorithms for Continuous Review Single-Sourcing Lost-Sales and Dual-Sourcing Inventory Models,” the author provides a theoretical foundation for this phenomenon in two classical inventory models. First, in a continuous review lost-sales model with lead times and Poisson demand, he proves that a capped base-stock policy has a worst-case performance guarantee of 1.79 by conducting an asymptotic analysis under a large penalty cost and lead time. Second, in a more complex continuous review dual-sourcing model with general lead times and Poisson demand, he proves that a similar capped dual-index policy has a worst-case performance guarantee of 1.79 under large lead time and ordering cost differences. The results provide a deeper understanding of the superior numerical performance of capped policies and present a new approach to proving worst-case performance guarantees of simple policies in hard inventory problems.