雷达自适应波束形成算法与架构

A. Finn, M. F. Griffin
{"title":"雷达自适应波束形成算法与架构","authors":"A. Finn, M. F. Griffin","doi":"10.1109/DASC.1990.111285","DOIUrl":null,"url":null,"abstract":"Adaptive beamforming algorithms and architectures for phased array radars are reviewed. In particular, the linearly constrained minimum variance (LCMV) beamformer with a normalized least mean square (LMS) weight update algorithm is examined for airborne surveillance applications. LCMV simulation results for realistic clutter, noise, and array miscalibration models are presented. The LCMV beamformer with a normalized LMS weight update algorithm is shown to offer good, performance with minimum computational complexity.<<ETX>>","PeriodicalId":141205,"journal":{"name":"9th IEEE/AIAA/NASA Conference on Digital Avionics Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Radar adaptive beamforming algorithms and architectures\",\"authors\":\"A. Finn, M. F. Griffin\",\"doi\":\"10.1109/DASC.1990.111285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive beamforming algorithms and architectures for phased array radars are reviewed. In particular, the linearly constrained minimum variance (LCMV) beamformer with a normalized least mean square (LMS) weight update algorithm is examined for airborne surveillance applications. LCMV simulation results for realistic clutter, noise, and array miscalibration models are presented. The LCMV beamformer with a normalized LMS weight update algorithm is shown to offer good, performance with minimum computational complexity.<<ETX>>\",\"PeriodicalId\":141205,\"journal\":{\"name\":\"9th IEEE/AIAA/NASA Conference on Digital Avionics Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"9th IEEE/AIAA/NASA Conference on Digital Avionics Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASC.1990.111285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th IEEE/AIAA/NASA Conference on Digital Avionics Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.1990.111285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

综述了相控阵雷达的自适应波束形成算法和结构。特别地,研究了具有归一化最小均方(LMS)权值更新算法的线性约束最小方差(LCMV)波束形成器在机载监视中的应用。给出了实际杂波、噪声和阵列误差模型的LCMV仿真结果。采用归一化LMS权值更新算法的LCMV波束形成器以最小的计算复杂度提供了良好的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radar adaptive beamforming algorithms and architectures
Adaptive beamforming algorithms and architectures for phased array radars are reviewed. In particular, the linearly constrained minimum variance (LCMV) beamformer with a normalized least mean square (LMS) weight update algorithm is examined for airborne surveillance applications. LCMV simulation results for realistic clutter, noise, and array miscalibration models are presented. The LCMV beamformer with a normalized LMS weight update algorithm is shown to offer good, performance with minimum computational complexity.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信