FDSOI高k金属栅极晶体管原子层沉积低k间隔层的表征

D. Triyoso, G. R. Mulfinger, K. Hempel, H. Tao, F. Koehler, L. Kang, A. Kumar, T. McArdle, J. Holt, A. Child, S. Straub, F. Ludwig, Z. Chen, J. Kluth, R. Carter
{"title":"FDSOI高k金属栅极晶体管原子层沉积低k间隔层的表征","authors":"D. Triyoso, G. R. Mulfinger, K. Hempel, H. Tao, F. Koehler, L. Kang, A. Kumar, T. McArdle, J. Holt, A. Child, S. Straub, F. Ludwig, Z. Chen, J. Kluth, R. Carter","doi":"10.1109/ICICDT.2017.7993500","DOIUrl":null,"url":null,"abstract":"FDSOI is one of the alternative device architectures chosen to extend CMOS scaling for high-k metal gate. FDSOI is ideal for applications needing a balanced trade-off among power, performance and cost, such as the Internet of Things (IoTs). One of the challenges in FDSOI integration is to obtain a low gate to source drain capacitance (overlap capacitance or DC capacitance). To enable this, low k spacer material is needed. In this study we compared two ALD low-k spacer materials namely SiOCN and SiBCN against the conventional SiN spacer. Material characterization reveals SiOCN has lower etch rate than SiBCN. Both materials have good thermal stability. Transistors with SiOCN and SiBCN spacers were formed. Implementation of low-k spacer does not have significant impact on VT variability and oxygen ingress. Transistors with SiOCN and SiBCN spacer exhibited lower DC and AC capacitance without transistor resistance degradation.","PeriodicalId":382735,"journal":{"name":"2017 IEEE International Conference on IC Design and Technology (ICICDT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterization of atomic layer deposited low-k spacer for FDSOI high-k metal gate transistor\",\"authors\":\"D. Triyoso, G. R. Mulfinger, K. Hempel, H. Tao, F. Koehler, L. Kang, A. Kumar, T. McArdle, J. Holt, A. Child, S. Straub, F. Ludwig, Z. Chen, J. Kluth, R. Carter\",\"doi\":\"10.1109/ICICDT.2017.7993500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"FDSOI is one of the alternative device architectures chosen to extend CMOS scaling for high-k metal gate. FDSOI is ideal for applications needing a balanced trade-off among power, performance and cost, such as the Internet of Things (IoTs). One of the challenges in FDSOI integration is to obtain a low gate to source drain capacitance (overlap capacitance or DC capacitance). To enable this, low k spacer material is needed. In this study we compared two ALD low-k spacer materials namely SiOCN and SiBCN against the conventional SiN spacer. Material characterization reveals SiOCN has lower etch rate than SiBCN. Both materials have good thermal stability. Transistors with SiOCN and SiBCN spacers were formed. Implementation of low-k spacer does not have significant impact on VT variability and oxygen ingress. Transistors with SiOCN and SiBCN spacer exhibited lower DC and AC capacitance without transistor resistance degradation.\",\"PeriodicalId\":382735,\"journal\":{\"name\":\"2017 IEEE International Conference on IC Design and Technology (ICICDT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on IC Design and Technology (ICICDT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICDT.2017.7993500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on IC Design and Technology (ICICDT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICDT.2017.7993500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

FDSOI是用于扩展高k金属栅极CMOS缩放的可选器件架构之一。FDSOI非常适合需要在功耗、性能和成本之间取得平衡的应用,例如物联网(iot)。FDSOI集成的挑战之一是获得低栅极到源极漏极电容(重叠电容或直流电容)。为了实现这一点,需要低k间隔材料。在这项研究中,我们比较了两种ALD低钾隔离材料,即SiOCN和SiBCN与传统的SiN隔离材料。材料表征表明SiOCN的腐蚀速率低于SiBCN。两种材料都具有良好的热稳定性。形成了SiOCN和SiBCN间隔层的晶体管。实施低k间隔剂对VT变异性和氧气进入没有显著影响。SiOCN和SiBCN间隔层的晶体管表现出较低的直流和交流电容,而晶体管电阻没有下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of atomic layer deposited low-k spacer for FDSOI high-k metal gate transistor
FDSOI is one of the alternative device architectures chosen to extend CMOS scaling for high-k metal gate. FDSOI is ideal for applications needing a balanced trade-off among power, performance and cost, such as the Internet of Things (IoTs). One of the challenges in FDSOI integration is to obtain a low gate to source drain capacitance (overlap capacitance or DC capacitance). To enable this, low k spacer material is needed. In this study we compared two ALD low-k spacer materials namely SiOCN and SiBCN against the conventional SiN spacer. Material characterization reveals SiOCN has lower etch rate than SiBCN. Both materials have good thermal stability. Transistors with SiOCN and SiBCN spacers were formed. Implementation of low-k spacer does not have significant impact on VT variability and oxygen ingress. Transistors with SiOCN and SiBCN spacer exhibited lower DC and AC capacitance without transistor resistance degradation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信