基于稀疏Gabor滤波和支持向量机的行人检测

Hong Cheng, N. Zheng, Junjie Qin
{"title":"基于稀疏Gabor滤波和支持向量机的行人检测","authors":"Hong Cheng, N. Zheng, Junjie Qin","doi":"10.1109/IVS.2005.1505166","DOIUrl":null,"url":null,"abstract":"Vehicle warning and control systems are the key component of ITS. Pedestrian detection is an important research content of vehicle active safety. The central idea behind such pedestrian safety systems is to protect the pedestrian from injuries. In this paper, we address the problem of pedestrian represent and detection where the motion cue is not used. Inspired by the work proposed by Zehang Sun [2004], we proposed a pedestrian feature representation approach based on sparse Gabor filters (SGF) learning from examples. In the phase of pedestrian detection, we used support vector machine to detect the pedestrian. Promising results demonstrate the potential of the proposed framework.","PeriodicalId":386189,"journal":{"name":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":"{\"title\":\"Pedestrian detection using sparse Gabor filter and support vector machine\",\"authors\":\"Hong Cheng, N. Zheng, Junjie Qin\",\"doi\":\"10.1109/IVS.2005.1505166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicle warning and control systems are the key component of ITS. Pedestrian detection is an important research content of vehicle active safety. The central idea behind such pedestrian safety systems is to protect the pedestrian from injuries. In this paper, we address the problem of pedestrian represent and detection where the motion cue is not used. Inspired by the work proposed by Zehang Sun [2004], we proposed a pedestrian feature representation approach based on sparse Gabor filters (SGF) learning from examples. In the phase of pedestrian detection, we used support vector machine to detect the pedestrian. Promising results demonstrate the potential of the proposed framework.\",\"PeriodicalId\":386189,\"journal\":{\"name\":\"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"93\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2005.1505166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2005.1505166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 93

摘要

车辆预警与控制系统是智能交通系统的关键组成部分。行人检测是车辆主动安全的重要研究内容。这种行人安全系统背后的核心思想是保护行人免受伤害。在本文中,我们解决了在不使用运动线索的情况下行人的表示和检测问题。受孙泽杭[2004]的启发,我们提出了一种基于稀疏Gabor滤波器(SGF)的行人特征表示方法。在行人检测阶段,我们使用支持向量机对行人进行检测。令人鼓舞的结果证明了所提出框架的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pedestrian detection using sparse Gabor filter and support vector machine
Vehicle warning and control systems are the key component of ITS. Pedestrian detection is an important research content of vehicle active safety. The central idea behind such pedestrian safety systems is to protect the pedestrian from injuries. In this paper, we address the problem of pedestrian represent and detection where the motion cue is not used. Inspired by the work proposed by Zehang Sun [2004], we proposed a pedestrian feature representation approach based on sparse Gabor filters (SGF) learning from examples. In the phase of pedestrian detection, we used support vector machine to detect the pedestrian. Promising results demonstrate the potential of the proposed framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信