极限学习路径回归与线性构形空间

V. Parque, T. Miyashita
{"title":"极限学习路径回归与线性构形空间","authors":"V. Parque, T. Miyashita","doi":"10.1109/IRC55401.2022.00074","DOIUrl":null,"url":null,"abstract":"This paper studies the path regression problem, that is learning motion planning functions that render trajectories from initial to end robot configurations in a single forward pass. To this end, we have studied the path regression problem using the linear transition in the configuration space and shallow neural schemes based on Extreme Learning Machines. Our computational experiments involving a relevant and diverse set of 6-DOF robot trajectories have shown path regression’s feasibility and practical efficiency with attractive generalization performance in out-of-sample observations. In particular, we show that it is possible to learn neural policies for path regression in about 10 ms. - 31 ms. and achieving 10−3 – 10−6 Mean Squared Error on unseen out-of-sample scenarios. We believe our approach has the potential to explore efficient algorithms for learning-based motion planning.","PeriodicalId":282759,"journal":{"name":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Path Regression with Extreme Learning and the Linear Configuration Space\",\"authors\":\"V. Parque, T. Miyashita\",\"doi\":\"10.1109/IRC55401.2022.00074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the path regression problem, that is learning motion planning functions that render trajectories from initial to end robot configurations in a single forward pass. To this end, we have studied the path regression problem using the linear transition in the configuration space and shallow neural schemes based on Extreme Learning Machines. Our computational experiments involving a relevant and diverse set of 6-DOF robot trajectories have shown path regression’s feasibility and practical efficiency with attractive generalization performance in out-of-sample observations. In particular, we show that it is possible to learn neural policies for path regression in about 10 ms. - 31 ms. and achieving 10−3 – 10−6 Mean Squared Error on unseen out-of-sample scenarios. We believe our approach has the potential to explore efficient algorithms for learning-based motion planning.\",\"PeriodicalId\":282759,\"journal\":{\"name\":\"2022 Sixth IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Sixth IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC55401.2022.00074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC55401.2022.00074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了路径回归问题,即学习运动规划函数,该函数可以在单次向前通过中呈现机器人从初始构型到末端构型的轨迹。为此,我们利用组态空间的线性转移和基于极限学习机的浅神经方案研究了路径回归问题。我们对一组相关且多样的六自由度机器人轨迹进行了计算实验,结果表明路径回归在样本外观测中具有可行性和实用效率,并具有良好的泛化性能。特别是,我们表明,在大约10 ms - 31 ms的时间内学习路径回归的神经策略是可能的,并且在未见过的样本外场景下实现10−3 - 10−6的均方误差。我们相信我们的方法有潜力为基于学习的运动规划探索有效的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Path Regression with Extreme Learning and the Linear Configuration Space
This paper studies the path regression problem, that is learning motion planning functions that render trajectories from initial to end robot configurations in a single forward pass. To this end, we have studied the path regression problem using the linear transition in the configuration space and shallow neural schemes based on Extreme Learning Machines. Our computational experiments involving a relevant and diverse set of 6-DOF robot trajectories have shown path regression’s feasibility and practical efficiency with attractive generalization performance in out-of-sample observations. In particular, we show that it is possible to learn neural policies for path regression in about 10 ms. - 31 ms. and achieving 10−3 – 10−6 Mean Squared Error on unseen out-of-sample scenarios. We believe our approach has the potential to explore efficient algorithms for learning-based motion planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信