{"title":"行为建模和基于证据的技术设计:我们可以从经验数据中学到什么","authors":"M. Avraamides","doi":"10.1145/3320435.3323708","DOIUrl":null,"url":null,"abstract":"To be effective, modern technological applications should take into account the needs, preferences, capabilities, and limitations of human users. In recent years, this requirement has made more imperative the need to understand in more detail the human cognition and its constraints. Cognitive processes and their underlying neural substrates are traditionally investigated with laboratory studies that yield data of different forms, ranging from accuracy and reaction time data in behavioural experiments to electrophysiological responses and neuro-imaging data in neuroscience studies. But how do such data enable psychologists and other scientists to draw conclusions about cognition? Also, how can the extracted knowledge be exploited for the design of evidence-based smart systems and innovative technologies? In this talk, I will address these questions by drawing examples from my research that employs various methods and techniques, including behavioural experiments in Virtual Reality, eye-tracking, and physiological recordings. Although most of this research focuses on how people attend, perceive, and memorize spatial information, studies investigating more general cognitive mechanisms (e.g., selective attention and executive functions) will be also presented.","PeriodicalId":254537,"journal":{"name":"Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Behavior and Designing Evidence-Based Technologies: What We Can Learn for Empirical Data\",\"authors\":\"M. Avraamides\",\"doi\":\"10.1145/3320435.3323708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To be effective, modern technological applications should take into account the needs, preferences, capabilities, and limitations of human users. In recent years, this requirement has made more imperative the need to understand in more detail the human cognition and its constraints. Cognitive processes and their underlying neural substrates are traditionally investigated with laboratory studies that yield data of different forms, ranging from accuracy and reaction time data in behavioural experiments to electrophysiological responses and neuro-imaging data in neuroscience studies. But how do such data enable psychologists and other scientists to draw conclusions about cognition? Also, how can the extracted knowledge be exploited for the design of evidence-based smart systems and innovative technologies? In this talk, I will address these questions by drawing examples from my research that employs various methods and techniques, including behavioural experiments in Virtual Reality, eye-tracking, and physiological recordings. Although most of this research focuses on how people attend, perceive, and memorize spatial information, studies investigating more general cognitive mechanisms (e.g., selective attention and executive functions) will be also presented.\",\"PeriodicalId\":254537,\"journal\":{\"name\":\"Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3320435.3323708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3320435.3323708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling Behavior and Designing Evidence-Based Technologies: What We Can Learn for Empirical Data
To be effective, modern technological applications should take into account the needs, preferences, capabilities, and limitations of human users. In recent years, this requirement has made more imperative the need to understand in more detail the human cognition and its constraints. Cognitive processes and their underlying neural substrates are traditionally investigated with laboratory studies that yield data of different forms, ranging from accuracy and reaction time data in behavioural experiments to electrophysiological responses and neuro-imaging data in neuroscience studies. But how do such data enable psychologists and other scientists to draw conclusions about cognition? Also, how can the extracted knowledge be exploited for the design of evidence-based smart systems and innovative technologies? In this talk, I will address these questions by drawing examples from my research that employs various methods and techniques, including behavioural experiments in Virtual Reality, eye-tracking, and physiological recordings. Although most of this research focuses on how people attend, perceive, and memorize spatial information, studies investigating more general cognitive mechanisms (e.g., selective attention and executive functions) will be also presented.