从希钦区到开模的旅程

Olivia Dumitrescu
{"title":"从希钦区到开模的旅程","authors":"Olivia Dumitrescu","doi":"10.1090/PSPUM/098/01726","DOIUrl":null,"url":null,"abstract":"This paper provides an introduction to the mathematical notion of \\emph{quantum curves}. We start with a concrete example arising from a graph enumeration problem. We then develop a theory of quantum curves associated with Hitchin spectral curves. A conjecture of Gaiotto, which predicts a new construction of opers from a Hitchin spectral curve, is explained. We give a step-by-step detailed description of the proof of the conjecture for the case of rank $2$ Higgs bundles. Finally, we identify the two concepts of \\textit{quantum curve} arising from the topological recursion formalism with the limit oper of Gaiotto's conjecture.","PeriodicalId":384712,"journal":{"name":"Proceedings of Symposia in Pure\n Mathematics","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A journey from the Hitchin section to the\\n oper moduli\",\"authors\":\"Olivia Dumitrescu\",\"doi\":\"10.1090/PSPUM/098/01726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides an introduction to the mathematical notion of \\\\emph{quantum curves}. We start with a concrete example arising from a graph enumeration problem. We then develop a theory of quantum curves associated with Hitchin spectral curves. A conjecture of Gaiotto, which predicts a new construction of opers from a Hitchin spectral curve, is explained. We give a step-by-step detailed description of the proof of the conjecture for the case of rank $2$ Higgs bundles. Finally, we identify the two concepts of \\\\textit{quantum curve} arising from the topological recursion formalism with the limit oper of Gaiotto's conjecture.\",\"PeriodicalId\":384712,\"journal\":{\"name\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/PSPUM/098/01726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Symposia in Pure\n Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PSPUM/098/01726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文介绍了\emph{量子曲线}的数学概念。我们从图枚举问题的一个具体例子开始。然后,我们发展了与希钦光谱曲线相关的量子曲线理论。本文解释了盖奥托的一个猜想,该猜想从希钦谱曲线中预测了一种新的粒子结构。我们给出了秩$2$希格斯束的猜想证明的一步一步的详细描述。最后,利用盖奥托猜想的极限算子,从拓扑递归形式论中确定了\textit{量子曲线}的两个概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A journey from the Hitchin section to the oper moduli
This paper provides an introduction to the mathematical notion of \emph{quantum curves}. We start with a concrete example arising from a graph enumeration problem. We then develop a theory of quantum curves associated with Hitchin spectral curves. A conjecture of Gaiotto, which predicts a new construction of opers from a Hitchin spectral curve, is explained. We give a step-by-step detailed description of the proof of the conjecture for the case of rank $2$ Higgs bundles. Finally, we identify the two concepts of \textit{quantum curve} arising from the topological recursion formalism with the limit oper of Gaiotto's conjecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信