在大型稀疏图上回答距离查询的一种以高速公路为中心的标注方法

R. Jin, Ning Ruan, Yang Xiang, Victor E. Lee
{"title":"在大型稀疏图上回答距离查询的一种以高速公路为中心的标注方法","authors":"R. Jin, Ning Ruan, Yang Xiang, Victor E. Lee","doi":"10.1145/2213836.2213887","DOIUrl":null,"url":null,"abstract":"The distance query, which asks the length of the shortest path from a vertex $u$ to another vertex v, has applications ranging from link analysis, semantic web and other ontology processing, to social network operations. Here, we propose a novel labeling scheme, referred to as Highway-Centric Labeling, for answering distance queries in a large sparse graph. It empowers the distance labeling with a highway structure and leverages a novel bipartite set cover framework/algorithm. Highway-centric labeling provides better labeling size than the state-of-the-art $2$-hop labeling, theoretically and empirically. It also offers both exact distance and approximate distance with bounded accuracy. A detailed experimental evaluation on both synthetic and real datasets demonstrates that highway-centric labeling can outperform the state-of-the-art distance computation approaches in terms of both index size and query time.","PeriodicalId":212616,"journal":{"name":"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":"{\"title\":\"A highway-centric labeling approach for answering distance queries on large sparse graphs\",\"authors\":\"R. Jin, Ning Ruan, Yang Xiang, Victor E. Lee\",\"doi\":\"10.1145/2213836.2213887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The distance query, which asks the length of the shortest path from a vertex $u$ to another vertex v, has applications ranging from link analysis, semantic web and other ontology processing, to social network operations. Here, we propose a novel labeling scheme, referred to as Highway-Centric Labeling, for answering distance queries in a large sparse graph. It empowers the distance labeling with a highway structure and leverages a novel bipartite set cover framework/algorithm. Highway-centric labeling provides better labeling size than the state-of-the-art $2$-hop labeling, theoretically and empirically. It also offers both exact distance and approximate distance with bounded accuracy. A detailed experimental evaluation on both synthetic and real datasets demonstrates that highway-centric labeling can outperform the state-of-the-art distance computation approaches in terms of both index size and query time.\",\"PeriodicalId\":212616,\"journal\":{\"name\":\"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"86\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2213836.2213887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2213836.2213887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86

摘要

距离查询,要求从一个顶点$u$到另一个顶点v的最短路径的长度,应用范围从链接分析,语义网和其他本体处理,到社交网络操作。在这里,我们提出了一种新的标记方案,称为高速公路中心标记,用于回答大型稀疏图中的距离查询。它赋予了高速公路结构的距离标记,并利用了一种新的二部集覆盖框架/算法。高速公路为中心的标签提供更好的标签尺寸比国家的最先进的$2$-hop标签,理论和经验。它还以有限的精度提供精确距离和近似距离。在合成数据集和真实数据集上的详细实验评估表明,以公路为中心的标记在索引大小和查询时间方面都优于最先进的距离计算方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A highway-centric labeling approach for answering distance queries on large sparse graphs
The distance query, which asks the length of the shortest path from a vertex $u$ to another vertex v, has applications ranging from link analysis, semantic web and other ontology processing, to social network operations. Here, we propose a novel labeling scheme, referred to as Highway-Centric Labeling, for answering distance queries in a large sparse graph. It empowers the distance labeling with a highway structure and leverages a novel bipartite set cover framework/algorithm. Highway-centric labeling provides better labeling size than the state-of-the-art $2$-hop labeling, theoretically and empirically. It also offers both exact distance and approximate distance with bounded accuracy. A detailed experimental evaluation on both synthetic and real datasets demonstrates that highway-centric labeling can outperform the state-of-the-art distance computation approaches in terms of both index size and query time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信