{"title":"在大型稀疏图上回答距离查询的一种以高速公路为中心的标注方法","authors":"R. Jin, Ning Ruan, Yang Xiang, Victor E. Lee","doi":"10.1145/2213836.2213887","DOIUrl":null,"url":null,"abstract":"The distance query, which asks the length of the shortest path from a vertex $u$ to another vertex v, has applications ranging from link analysis, semantic web and other ontology processing, to social network operations. Here, we propose a novel labeling scheme, referred to as Highway-Centric Labeling, for answering distance queries in a large sparse graph. It empowers the distance labeling with a highway structure and leverages a novel bipartite set cover framework/algorithm. Highway-centric labeling provides better labeling size than the state-of-the-art $2$-hop labeling, theoretically and empirically. It also offers both exact distance and approximate distance with bounded accuracy. A detailed experimental evaluation on both synthetic and real datasets demonstrates that highway-centric labeling can outperform the state-of-the-art distance computation approaches in terms of both index size and query time.","PeriodicalId":212616,"journal":{"name":"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":"{\"title\":\"A highway-centric labeling approach for answering distance queries on large sparse graphs\",\"authors\":\"R. Jin, Ning Ruan, Yang Xiang, Victor E. Lee\",\"doi\":\"10.1145/2213836.2213887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The distance query, which asks the length of the shortest path from a vertex $u$ to another vertex v, has applications ranging from link analysis, semantic web and other ontology processing, to social network operations. Here, we propose a novel labeling scheme, referred to as Highway-Centric Labeling, for answering distance queries in a large sparse graph. It empowers the distance labeling with a highway structure and leverages a novel bipartite set cover framework/algorithm. Highway-centric labeling provides better labeling size than the state-of-the-art $2$-hop labeling, theoretically and empirically. It also offers both exact distance and approximate distance with bounded accuracy. A detailed experimental evaluation on both synthetic and real datasets demonstrates that highway-centric labeling can outperform the state-of-the-art distance computation approaches in terms of both index size and query time.\",\"PeriodicalId\":212616,\"journal\":{\"name\":\"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"86\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2213836.2213887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2213836.2213887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A highway-centric labeling approach for answering distance queries on large sparse graphs
The distance query, which asks the length of the shortest path from a vertex $u$ to another vertex v, has applications ranging from link analysis, semantic web and other ontology processing, to social network operations. Here, we propose a novel labeling scheme, referred to as Highway-Centric Labeling, for answering distance queries in a large sparse graph. It empowers the distance labeling with a highway structure and leverages a novel bipartite set cover framework/algorithm. Highway-centric labeling provides better labeling size than the state-of-the-art $2$-hop labeling, theoretically and empirically. It also offers both exact distance and approximate distance with bounded accuracy. A detailed experimental evaluation on both synthetic and real datasets demonstrates that highway-centric labeling can outperform the state-of-the-art distance computation approaches in terms of both index size and query time.