基于Turbo融合的上下文无关手机识别新极限基准

Timo Lohrenz, Wei Li, T. Fingscheidt
{"title":"基于Turbo融合的上下文无关手机识别新极限基准","authors":"Timo Lohrenz, Wei Li, T. Fingscheidt","doi":"10.1109/SLT.2018.8639670","DOIUrl":null,"url":null,"abstract":"In this work, we apply the recently proposed turbo fusion in conjunction with state-of-the-art convolutional neural networks as acoustic models to the standard phone recognition task on the TIMIT database. The turbo fusion operates on posterior streams stemming from standard filterbank features and from group delay (phase) features. By the iterative exchange of posterior information, the phone error rate is decreased down to 16.91% absolute, which is to our knowledge the best reported result on the TIMIT core test set so far using context-independent acoustic models, outperforming the previous respective benchmark by 4.4% relative.","PeriodicalId":377307,"journal":{"name":"2018 IEEE Spoken Language Technology Workshop (SLT)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A New Timit Benchmark for Context-Independent Phone Recognition Using Turbo Fusion\",\"authors\":\"Timo Lohrenz, Wei Li, T. Fingscheidt\",\"doi\":\"10.1109/SLT.2018.8639670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we apply the recently proposed turbo fusion in conjunction with state-of-the-art convolutional neural networks as acoustic models to the standard phone recognition task on the TIMIT database. The turbo fusion operates on posterior streams stemming from standard filterbank features and from group delay (phase) features. By the iterative exchange of posterior information, the phone error rate is decreased down to 16.91% absolute, which is to our knowledge the best reported result on the TIMIT core test set so far using context-independent acoustic models, outperforming the previous respective benchmark by 4.4% relative.\",\"PeriodicalId\":377307,\"journal\":{\"name\":\"2018 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2018.8639670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2018.8639670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在这项工作中,我们将最近提出的涡轮融合与最先进的卷积神经网络相结合,作为声学模型应用于TIMIT数据库上的标准电话识别任务。基于标准滤波器组特征和群延迟(相位)特征的后验流进行涡轮融合。通过后验信息的迭代交换,电话错误率下降到16.91%的绝对,这是我们所知的TIMIT核心测试集迄今为止使用上下文无关声学模型的最佳报告结果,比之前的各自基准相对高出4.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Timit Benchmark for Context-Independent Phone Recognition Using Turbo Fusion
In this work, we apply the recently proposed turbo fusion in conjunction with state-of-the-art convolutional neural networks as acoustic models to the standard phone recognition task on the TIMIT database. The turbo fusion operates on posterior streams stemming from standard filterbank features and from group delay (phase) features. By the iterative exchange of posterior information, the phone error rate is decreased down to 16.91% absolute, which is to our knowledge the best reported result on the TIMIT core test set so far using context-independent acoustic models, outperforming the previous respective benchmark by 4.4% relative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信