C. Clemente, L. Pallotta, I. Proudler, A. De Maio, J. Soraghan, A. Farina
{"title":"基于伪泽尼克矩的多传感器全极化SAR自动目标识别","authors":"C. Clemente, L. Pallotta, I. Proudler, A. De Maio, J. Soraghan, A. Farina","doi":"10.1109/RADAR.2014.7060271","DOIUrl":null,"url":null,"abstract":"In the modern battlefield scenario multiple sources of information may be exploited to mitigate uncertainty. Polarization and spatial diversity can provide useful information for specific and critical tasks such as the Automatic Target Recognition (ATR). In this paper the use of pseudo-Zernike moments applied to the full-polarimetric Gotcha dataset is presented. Specifically improved single platform ATR performance is demonstrated through the use of multiple observations.","PeriodicalId":317910,"journal":{"name":"2014 International Radar Conference","volume":"224 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-sensor full-polarimetric SAR Automatic Target Recognition using pseudo-Zernike moments\",\"authors\":\"C. Clemente, L. Pallotta, I. Proudler, A. De Maio, J. Soraghan, A. Farina\",\"doi\":\"10.1109/RADAR.2014.7060271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the modern battlefield scenario multiple sources of information may be exploited to mitigate uncertainty. Polarization and spatial diversity can provide useful information for specific and critical tasks such as the Automatic Target Recognition (ATR). In this paper the use of pseudo-Zernike moments applied to the full-polarimetric Gotcha dataset is presented. Specifically improved single platform ATR performance is demonstrated through the use of multiple observations.\",\"PeriodicalId\":317910,\"journal\":{\"name\":\"2014 International Radar Conference\",\"volume\":\"224 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Radar Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2014.7060271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2014.7060271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-sensor full-polarimetric SAR Automatic Target Recognition using pseudo-Zernike moments
In the modern battlefield scenario multiple sources of information may be exploited to mitigate uncertainty. Polarization and spatial diversity can provide useful information for specific and critical tasks such as the Automatic Target Recognition (ATR). In this paper the use of pseudo-Zernike moments applied to the full-polarimetric Gotcha dataset is presented. Specifically improved single platform ATR performance is demonstrated through the use of multiple observations.