启用具有3D子采样的低比特率MPEG v - pc编码体积视频流

Yuang Shi, Pranav Venkatram, Yifan Ding, Wei Tsang Ooi
{"title":"启用具有3D子采样的低比特率MPEG v - pc编码体积视频流","authors":"Yuang Shi, Pranav Venkatram, Yifan Ding, Wei Tsang Ooi","doi":"10.1145/3587819.3590981","DOIUrl":null,"url":null,"abstract":"MPEG's Video-based Point Cloud Compression (V-PCC) is a recent new standard for volumetric video compression. By mapping a 3D dynamic point cloud to a 2D image sequence, V-PCC can rely on state-of-the-art video codecs to achieve high compression rate while maintaining the visual fidelity of the point cloud sequence. The quality of a compressed point cloud degrades steeply, however, below the operational bit-rate range of the video codec. In this work, we show that redundant information inherent in a 3D point cloud can be exploited to further extend the bit-rate range of the V-PCC codec, enabling it to operate in a low bit-rate scenario that is important in the context of volumetric video streaming. By simplifying the 3D point clouds through down-sampling and down-scaling during the encoding phase, and reversing the process during the decoding phase, we show that V-PCC could achieve up to 2.1 dB improvement in peak signal-to-noise ratio (PSNR), 7.1% improvement in structural similarity index (SSIM) and 14.8 improvement in video multimethod assessment fusion (VMAF) of the rendered point clouds at the same bit-rate and correspondingly up to 48.5% lower bit-rate at the same image quality.","PeriodicalId":330983,"journal":{"name":"Proceedings of the 14th Conference on ACM Multimedia Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Enabling Low Bit-Rate MPEG V-PCC-encoded Volumetric Video Streaming with 3D Sub-sampling\",\"authors\":\"Yuang Shi, Pranav Venkatram, Yifan Ding, Wei Tsang Ooi\",\"doi\":\"10.1145/3587819.3590981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MPEG's Video-based Point Cloud Compression (V-PCC) is a recent new standard for volumetric video compression. By mapping a 3D dynamic point cloud to a 2D image sequence, V-PCC can rely on state-of-the-art video codecs to achieve high compression rate while maintaining the visual fidelity of the point cloud sequence. The quality of a compressed point cloud degrades steeply, however, below the operational bit-rate range of the video codec. In this work, we show that redundant information inherent in a 3D point cloud can be exploited to further extend the bit-rate range of the V-PCC codec, enabling it to operate in a low bit-rate scenario that is important in the context of volumetric video streaming. By simplifying the 3D point clouds through down-sampling and down-scaling during the encoding phase, and reversing the process during the decoding phase, we show that V-PCC could achieve up to 2.1 dB improvement in peak signal-to-noise ratio (PSNR), 7.1% improvement in structural similarity index (SSIM) and 14.8 improvement in video multimethod assessment fusion (VMAF) of the rendered point clouds at the same bit-rate and correspondingly up to 48.5% lower bit-rate at the same image quality.\",\"PeriodicalId\":330983,\"journal\":{\"name\":\"Proceedings of the 14th Conference on ACM Multimedia Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 14th Conference on ACM Multimedia Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3587819.3590981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th Conference on ACM Multimedia Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3587819.3590981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

MPEG的基于视频的点云压缩(V-PCC)是体积视频压缩的新标准。通过将3D动态点云映射到2D图像序列,V-PCC可以依靠最先进的视频编解码器来实现高压缩率,同时保持点云序列的视觉保真度。压缩点云的质量急剧下降,然而,低于视频编解码器的操作比特率范围。在这项工作中,我们表明可以利用3D点云中固有的冗余信息来进一步扩展V-PCC编解码器的比特率范围,使其能够在低比特率场景中运行,这在体积视频流环境中很重要。通过在编码阶段通过降采样和降尺度对三维点云进行简化,并在解码阶段进行反向处理,我们发现,在相同的图像质量下,V-PCC可以使绘制的点云的峰值信噪比(PSNR)提高2.1 dB,结构相似指数(SSIM)提高7.1%,视频多方法评估融合(VMAF)提高14.8,相应的,在相同的图像质量下,比特率降低48.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enabling Low Bit-Rate MPEG V-PCC-encoded Volumetric Video Streaming with 3D Sub-sampling
MPEG's Video-based Point Cloud Compression (V-PCC) is a recent new standard for volumetric video compression. By mapping a 3D dynamic point cloud to a 2D image sequence, V-PCC can rely on state-of-the-art video codecs to achieve high compression rate while maintaining the visual fidelity of the point cloud sequence. The quality of a compressed point cloud degrades steeply, however, below the operational bit-rate range of the video codec. In this work, we show that redundant information inherent in a 3D point cloud can be exploited to further extend the bit-rate range of the V-PCC codec, enabling it to operate in a low bit-rate scenario that is important in the context of volumetric video streaming. By simplifying the 3D point clouds through down-sampling and down-scaling during the encoding phase, and reversing the process during the decoding phase, we show that V-PCC could achieve up to 2.1 dB improvement in peak signal-to-noise ratio (PSNR), 7.1% improvement in structural similarity index (SSIM) and 14.8 improvement in video multimethod assessment fusion (VMAF) of the rendered point clouds at the same bit-rate and correspondingly up to 48.5% lower bit-rate at the same image quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信