基于mrf的无监督模型参数估计图像分割

Y. Toya, H. Kudo
{"title":"基于mrf的无监督模型参数估计图像分割","authors":"Y. Toya, H. Kudo","doi":"10.23919/MVA.2017.7986893","DOIUrl":null,"url":null,"abstract":"This paper deals with image segmentation when the image consists of uniform background (b.g.) and uniform foreground (f.g.) with noise. We formulate this problem into the joint minimization of MRF energy with respect to a label image and density parameters corresponding to f.g. and b.g., and solve it exactly in reasonable computation time. The proposed method efficiently solves the joint minimization by utilizing the novel property that multiple minimizations of MRF energy, corresponding to different combinations of density parameters for b.g. and f.g., can be solved by a single total-variation minimization. In addition, we also extend the proposed method to the case where label images together with density values corresponding to multiple smoothing (regularization) parameters can be obtained, exactly and simultaneously with a much shorter computation time compared with the trivial exhaustive search.","PeriodicalId":193716,"journal":{"name":"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An MRF-based image segmentation with unsupervised model parameter estimation\",\"authors\":\"Y. Toya, H. Kudo\",\"doi\":\"10.23919/MVA.2017.7986893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with image segmentation when the image consists of uniform background (b.g.) and uniform foreground (f.g.) with noise. We formulate this problem into the joint minimization of MRF energy with respect to a label image and density parameters corresponding to f.g. and b.g., and solve it exactly in reasonable computation time. The proposed method efficiently solves the joint minimization by utilizing the novel property that multiple minimizations of MRF energy, corresponding to different combinations of density parameters for b.g. and f.g., can be solved by a single total-variation minimization. In addition, we also extend the proposed method to the case where label images together with density values corresponding to multiple smoothing (regularization) parameters can be obtained, exactly and simultaneously with a much shorter computation time compared with the trivial exhaustive search.\",\"PeriodicalId\":193716,\"journal\":{\"name\":\"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA.2017.7986893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA.2017.7986893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有均匀背景(b.g.)和均匀前景(f.g.)的图像分割问题。我们将这一问题转化为相对于标签图像和对应于fg和bg的密度参数的磁振子能量的联合最小化问题,并在合理的计算时间内精确求解。该方法利用单次全变分最小值可求解对应于b.g.和f.g.密度参数不同组合的磁流变能量的多个最小值的新特性,有效地解决了联合最小值问题。此外,我们还将所提出的方法扩展到可以精确地同时获得标签图像以及对应于多个平滑(正则化)参数的密度值的情况,与琐碎的穷举搜索相比,计算时间要短得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An MRF-based image segmentation with unsupervised model parameter estimation
This paper deals with image segmentation when the image consists of uniform background (b.g.) and uniform foreground (f.g.) with noise. We formulate this problem into the joint minimization of MRF energy with respect to a label image and density parameters corresponding to f.g. and b.g., and solve it exactly in reasonable computation time. The proposed method efficiently solves the joint minimization by utilizing the novel property that multiple minimizations of MRF energy, corresponding to different combinations of density parameters for b.g. and f.g., can be solved by a single total-variation minimization. In addition, we also extend the proposed method to the case where label images together with density values corresponding to multiple smoothing (regularization) parameters can be obtained, exactly and simultaneously with a much shorter computation time compared with the trivial exhaustive search.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信