构造动态系统异常行为识别器的遗传算法

D. Kovalenko, V. Kostenko
{"title":"构造动态系统异常行为识别器的遗传算法","authors":"D. Kovalenko, V. Kostenko","doi":"10.1109/BICTA.2010.5645318","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of automatic construction of recognizers of anomalies in behaviour of complicated dynamical systems is considered. Information about system behaviour is available in a form of multidimensional trajectories (time-series) obtained from sensors surrounding the system. A specific feature of the problem consists in the fact that, depending on the individual properties of the system and conditions of its operation, trajectories that contain anomalies may significantly differ from each other in amplitude and length. The genetic algorithm described here allows to construct recognizers of abnormal behaviour of complicated dynamical systems.","PeriodicalId":302619,"journal":{"name":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A genetic algorithm for construction of recognizers of anomalies in behaviour of dynamical systems\",\"authors\":\"D. Kovalenko, V. Kostenko\",\"doi\":\"10.1109/BICTA.2010.5645318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the problem of automatic construction of recognizers of anomalies in behaviour of complicated dynamical systems is considered. Information about system behaviour is available in a form of multidimensional trajectories (time-series) obtained from sensors surrounding the system. A specific feature of the problem consists in the fact that, depending on the individual properties of the system and conditions of its operation, trajectories that contain anomalies may significantly differ from each other in amplitude and length. The genetic algorithm described here allows to construct recognizers of abnormal behaviour of complicated dynamical systems.\",\"PeriodicalId\":302619,\"journal\":{\"name\":\"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BICTA.2010.5645318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2010.5645318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了复杂动力系统异常行为识别器的自动构造问题。有关系统行为的信息以从系统周围的传感器获得的多维轨迹(时间序列)的形式提供。该问题的一个具体特征在于,根据系统的个别性质及其运行条件,包含异常的轨迹可能在振幅和长度上彼此有很大差异。这里描述的遗传算法允许构造复杂动力系统异常行为的识别器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A genetic algorithm for construction of recognizers of anomalies in behaviour of dynamical systems
In this paper, the problem of automatic construction of recognizers of anomalies in behaviour of complicated dynamical systems is considered. Information about system behaviour is available in a form of multidimensional trajectories (time-series) obtained from sensors surrounding the system. A specific feature of the problem consists in the fact that, depending on the individual properties of the system and conditions of its operation, trajectories that contain anomalies may significantly differ from each other in amplitude and length. The genetic algorithm described here allows to construct recognizers of abnormal behaviour of complicated dynamical systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信