基于ADD的边缘检测系统应用与评价

Jong Gu Lee, Eun Mi Kim, Cheol-Jung Yoo, Ok-Bae Chang
{"title":"基于ADD的边缘检测系统应用与评价","authors":"Jong Gu Lee, Eun Mi Kim, Cheol-Jung Yoo, Ok-Bae Chang","doi":"10.1109/ICCSA.2007.64","DOIUrl":null,"url":null,"abstract":"In order to detect and locate edge features precisely in real images we have developed an algorithm by introducing a nonlocal differentiation of intensity profiles called adaptive directional derivative (ADD), which is evaluated independently of varying ramp widths. In this paper, we first develop the edge detector system employing the ADD and then, the performance of the algorithm is illustrated by comparing the results to those from the Canny's edge detector.","PeriodicalId":386960,"journal":{"name":"2007 International Conference on Computational Science and its Applications (ICCSA 2007)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Application and evaluation of edge detection system employing the ADD\",\"authors\":\"Jong Gu Lee, Eun Mi Kim, Cheol-Jung Yoo, Ok-Bae Chang\",\"doi\":\"10.1109/ICCSA.2007.64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to detect and locate edge features precisely in real images we have developed an algorithm by introducing a nonlocal differentiation of intensity profiles called adaptive directional derivative (ADD), which is evaluated independently of varying ramp widths. In this paper, we first develop the edge detector system employing the ADD and then, the performance of the algorithm is illustrated by comparing the results to those from the Canny's edge detector.\",\"PeriodicalId\":386960,\"journal\":{\"name\":\"2007 International Conference on Computational Science and its Applications (ICCSA 2007)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Computational Science and its Applications (ICCSA 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSA.2007.64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computational Science and its Applications (ICCSA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSA.2007.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了在真实图像中精确地检测和定位边缘特征,我们开发了一种算法,通过引入一种称为自适应方向导数(ADD)的强度剖面的非局部微分,该算法独立于坡道宽度的变化进行评估。在本文中,我们首先开发了基于ADD的边缘检测系统,然后通过与Canny边缘检测结果的比较来说明该算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application and evaluation of edge detection system employing the ADD
In order to detect and locate edge features precisely in real images we have developed an algorithm by introducing a nonlocal differentiation of intensity profiles called adaptive directional derivative (ADD), which is evaluated independently of varying ramp widths. In this paper, we first develop the edge detector system employing the ADD and then, the performance of the algorithm is illustrated by comparing the results to those from the Canny's edge detector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信