基于生成对抗网络的斜校正仿射变换多相机人物再识别

Ziyang Ni, J. Pei, Yang Zhao
{"title":"基于生成对抗网络的斜校正仿射变换多相机人物再识别","authors":"Ziyang Ni, J. Pei, Yang Zhao","doi":"10.1145/3449365.3449380","DOIUrl":null,"url":null,"abstract":"In intelligent video surveillance system, person re-identification is a key technology. In order to address the problem, the decrease in performance of person Re-Id lead by the skew pedestrian images, this paper proposes the affine transform for skew correction based on generative adversarial network (GAN) method for multi-camera person re-identification (Re-Id). Firstly, an effective GAN is proposed to guide the spatial transformer network (STN) to learn affine transform parameters for skew correction in an adversarial way, and STN is adopted as the preprocessing model for Re-Id to reduce influence of variations in person posture. Then, features are extracted by a deep convolutional neural network from input images which are corrected by STN, and finally results can be obtained by measuring similarity between features. Besides, in the proposed GAN, a classification model and related loss functions are introduced to reduce the damage to the key features of pedestrian during skew correction. The effectiveness of the proposed method is verified by experiments conducted on the skew pedestrian dataset.","PeriodicalId":188200,"journal":{"name":"Proceedings of the 2021 3rd Asia Pacific Information Technology Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Affine Transform for Skew Correction Based on Generative Adversarial Network Method for Multi-Camera Person Re-Identification\",\"authors\":\"Ziyang Ni, J. Pei, Yang Zhao\",\"doi\":\"10.1145/3449365.3449380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In intelligent video surveillance system, person re-identification is a key technology. In order to address the problem, the decrease in performance of person Re-Id lead by the skew pedestrian images, this paper proposes the affine transform for skew correction based on generative adversarial network (GAN) method for multi-camera person re-identification (Re-Id). Firstly, an effective GAN is proposed to guide the spatial transformer network (STN) to learn affine transform parameters for skew correction in an adversarial way, and STN is adopted as the preprocessing model for Re-Id to reduce influence of variations in person posture. Then, features are extracted by a deep convolutional neural network from input images which are corrected by STN, and finally results can be obtained by measuring similarity between features. Besides, in the proposed GAN, a classification model and related loss functions are introduced to reduce the damage to the key features of pedestrian during skew correction. The effectiveness of the proposed method is verified by experiments conducted on the skew pedestrian dataset.\",\"PeriodicalId\":188200,\"journal\":{\"name\":\"Proceedings of the 2021 3rd Asia Pacific Information Technology Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 3rd Asia Pacific Information Technology Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3449365.3449380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 3rd Asia Pacific Information Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3449365.3449380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在智能视频监控系统中,人员再识别是一项关键技术。针对行人图像歪斜导致人脸再识别性能下降的问题,提出了基于仿射变换歪斜校正的生成对抗网络(GAN)多相机人脸再识别方法。首先,提出了一种有效的GAN来引导空间变压器网络(STN)以对抗的方式学习仿射变换参数进行倾斜校正,并采用STN作为Re-Id的预处理模型,以减少人体姿态变化的影响。然后,通过深度卷积神经网络从输入图像中提取特征,并进行STN校正,最后通过测量特征之间的相似度得到结果。此外,在GAN中引入了分类模型和相关的损失函数,以减少行人在倾斜校正过程中对关键特征的损害。在倾斜行人数据集上进行的实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Affine Transform for Skew Correction Based on Generative Adversarial Network Method for Multi-Camera Person Re-Identification
In intelligent video surveillance system, person re-identification is a key technology. In order to address the problem, the decrease in performance of person Re-Id lead by the skew pedestrian images, this paper proposes the affine transform for skew correction based on generative adversarial network (GAN) method for multi-camera person re-identification (Re-Id). Firstly, an effective GAN is proposed to guide the spatial transformer network (STN) to learn affine transform parameters for skew correction in an adversarial way, and STN is adopted as the preprocessing model for Re-Id to reduce influence of variations in person posture. Then, features are extracted by a deep convolutional neural network from input images which are corrected by STN, and finally results can be obtained by measuring similarity between features. Besides, in the proposed GAN, a classification model and related loss functions are introduced to reduce the damage to the key features of pedestrian during skew correction. The effectiveness of the proposed method is verified by experiments conducted on the skew pedestrian dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信