应用变分热力学方法对关键智能电网电子设备进行建模

J. Rose, N. Gunther, Md A. Sattar, Mahmudur Rahman
{"title":"应用变分热力学方法对关键智能电网电子设备进行建模","authors":"J. Rose, N. Gunther, Md A. Sattar, Mahmudur Rahman","doi":"10.1109/CSCITA.2017.8066536","DOIUrl":null,"url":null,"abstract":"The performance of the Trench Insulated Gate Bipolar Transistor is of special concern to the Smart Grid community. Here, a novel methodology for the quasi-static behavior of the device is introduced which is based on a firmly established law of classical thermodynamics, viz., the minimization of the Helmholtz Free Energy as a function of the internal fields, potential, and charge. The analysis begins with the expression of free energy density given by Landau. Then the ‘trial’ functions of the potential which are indexed to the parameter ‘interface potential’ and the parameter ‘penetration distance of interface potential’ into the doped silicon are introduced. Next, the minimum condition for Helmholtz Energy using these parameters by standard methods is found. Results of this analysis produce analytic closed-form expressions for ‘penetration distance of interface potential’ vs. ‘interface potential’ and ‘interface potential’ vs. ‘gate potential’ for both p-base and n-drift regions.","PeriodicalId":299147,"journal":{"name":"2017 2nd International Conference on Communication Systems, Computing and IT Applications (CSCITA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A variational thermodynamic methodology applied to model critical smart grid electronic devices\",\"authors\":\"J. Rose, N. Gunther, Md A. Sattar, Mahmudur Rahman\",\"doi\":\"10.1109/CSCITA.2017.8066536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of the Trench Insulated Gate Bipolar Transistor is of special concern to the Smart Grid community. Here, a novel methodology for the quasi-static behavior of the device is introduced which is based on a firmly established law of classical thermodynamics, viz., the minimization of the Helmholtz Free Energy as a function of the internal fields, potential, and charge. The analysis begins with the expression of free energy density given by Landau. Then the ‘trial’ functions of the potential which are indexed to the parameter ‘interface potential’ and the parameter ‘penetration distance of interface potential’ into the doped silicon are introduced. Next, the minimum condition for Helmholtz Energy using these parameters by standard methods is found. Results of this analysis produce analytic closed-form expressions for ‘penetration distance of interface potential’ vs. ‘interface potential’ and ‘interface potential’ vs. ‘gate potential’ for both p-base and n-drift regions.\",\"PeriodicalId\":299147,\"journal\":{\"name\":\"2017 2nd International Conference on Communication Systems, Computing and IT Applications (CSCITA)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 2nd International Conference on Communication Systems, Computing and IT Applications (CSCITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCITA.2017.8066536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd International Conference on Communication Systems, Computing and IT Applications (CSCITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCITA.2017.8066536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

沟槽绝缘栅双极晶体管的性能是智能电网界特别关注的问题。本文介绍了一种基于经典热力学定律的器件准静态行为的新方法,即亥姆霍兹自由能作为内场、电位和电荷的函数的最小化。分析从朗道给出的自由能密度表达式开始。然后介绍了以“界面势”参数和“界面势穿透距离”参数为指标的势的“试验”函数。其次,用标准方法利用这些参数求出亥姆霍兹能的最小条件。该分析的结果产生了p-base和n-drift区域的“界面电势穿透距离”与“界面电势”和“界面电势”与“栅电势”的解析封闭表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A variational thermodynamic methodology applied to model critical smart grid electronic devices
The performance of the Trench Insulated Gate Bipolar Transistor is of special concern to the Smart Grid community. Here, a novel methodology for the quasi-static behavior of the device is introduced which is based on a firmly established law of classical thermodynamics, viz., the minimization of the Helmholtz Free Energy as a function of the internal fields, potential, and charge. The analysis begins with the expression of free energy density given by Landau. Then the ‘trial’ functions of the potential which are indexed to the parameter ‘interface potential’ and the parameter ‘penetration distance of interface potential’ into the doped silicon are introduced. Next, the minimum condition for Helmholtz Energy using these parameters by standard methods is found. Results of this analysis produce analytic closed-form expressions for ‘penetration distance of interface potential’ vs. ‘interface potential’ and ‘interface potential’ vs. ‘gate potential’ for both p-base and n-drift regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信