{"title":"使用机器学习方法来实现和评估产品线特征","authors":"D. Bacciu, S. Gnesi, L. Semini","doi":"10.4204/EPTCS.188.8","DOIUrl":null,"url":null,"abstract":"Bike-sharing systems are a means of smart transportation in urban environments with the benefit of a positive impact on urban mobility. In this paper we are interested in studying and modeling the behavior of features that permit the end user to access, with her/his web browser, the status of the Bike-Sharing system. In particular, we address features able to make a prediction on the system state. We propose to use a machine learning approach to analyze usage patterns and learn computational models of such features from logs of system usage. \nOn the one hand, machine learning methodologies provide a powerful and general means to implement a wide choice of predictive features. On the other hand, trained machine learning models are provided with a measure of predictive performance that can be used as a metric to assess the cost-performance trade-off of the feature. This provides a principled way to assess the runtime behavior of different components before putting them into operation.","PeriodicalId":233765,"journal":{"name":"International Workshop on Automated Specification and Verification of Web Sites","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Using a Machine Learning Approach to Implement and Evaluate Product Line Features\",\"authors\":\"D. Bacciu, S. Gnesi, L. Semini\",\"doi\":\"10.4204/EPTCS.188.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bike-sharing systems are a means of smart transportation in urban environments with the benefit of a positive impact on urban mobility. In this paper we are interested in studying and modeling the behavior of features that permit the end user to access, with her/his web browser, the status of the Bike-Sharing system. In particular, we address features able to make a prediction on the system state. We propose to use a machine learning approach to analyze usage patterns and learn computational models of such features from logs of system usage. \\nOn the one hand, machine learning methodologies provide a powerful and general means to implement a wide choice of predictive features. On the other hand, trained machine learning models are provided with a measure of predictive performance that can be used as a metric to assess the cost-performance trade-off of the feature. This provides a principled way to assess the runtime behavior of different components before putting them into operation.\",\"PeriodicalId\":233765,\"journal\":{\"name\":\"International Workshop on Automated Specification and Verification of Web Sites\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Automated Specification and Verification of Web Sites\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.188.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Automated Specification and Verification of Web Sites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.188.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using a Machine Learning Approach to Implement and Evaluate Product Line Features
Bike-sharing systems are a means of smart transportation in urban environments with the benefit of a positive impact on urban mobility. In this paper we are interested in studying and modeling the behavior of features that permit the end user to access, with her/his web browser, the status of the Bike-Sharing system. In particular, we address features able to make a prediction on the system state. We propose to use a machine learning approach to analyze usage patterns and learn computational models of such features from logs of system usage.
On the one hand, machine learning methodologies provide a powerful and general means to implement a wide choice of predictive features. On the other hand, trained machine learning models are provided with a measure of predictive performance that can be used as a metric to assess the cost-performance trade-off of the feature. This provides a principled way to assess the runtime behavior of different components before putting them into operation.