嵌入式最大灵敏度神经网络的在线学习

G. Sanmiguel, Luis Lauro Gonzalez, L. Torres-Treviño, Cesar Guerra
{"title":"嵌入式最大灵敏度神经网络的在线学习","authors":"G. Sanmiguel, Luis Lauro Gonzalez, L. Torres-Treviño, Cesar Guerra","doi":"10.1109/MICAI.2012.19","DOIUrl":null,"url":null,"abstract":"A maximum sensibility neural networks was implemented in an embedded system to make on-line learning. This neural network has advantages like easy implementation and a quick learning based on manage information in place of a gradient algorithm. The embedded maximum sensibility neural network was used to learn non linear functions on-line using potentiometers and a push button giving the function of activation and learning. The results give us a platform to apply on-line learning using neural networks.","PeriodicalId":348369,"journal":{"name":"2012 11th Mexican International Conference on Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"On-Line Learning in an Embedded Maximum Sensibility Neural Network\",\"authors\":\"G. Sanmiguel, Luis Lauro Gonzalez, L. Torres-Treviño, Cesar Guerra\",\"doi\":\"10.1109/MICAI.2012.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A maximum sensibility neural networks was implemented in an embedded system to make on-line learning. This neural network has advantages like easy implementation and a quick learning based on manage information in place of a gradient algorithm. The embedded maximum sensibility neural network was used to learn non linear functions on-line using potentiometers and a push button giving the function of activation and learning. The results give us a platform to apply on-line learning using neural networks.\",\"PeriodicalId\":348369,\"journal\":{\"name\":\"2012 11th Mexican International Conference on Artificial Intelligence\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th Mexican International Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MICAI.2012.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th Mexican International Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2012.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在嵌入式系统中实现了一种最大灵敏度神经网络实现在线学习。该神经网络具有实现简单、基于管理信息的快速学习等优点,可以代替梯度算法。嵌入式最大灵敏度神经网络利用电位器和具有激活和学习功能的按钮在线学习非线性函数。研究结果为应用神经网络进行在线学习提供了一个平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On-Line Learning in an Embedded Maximum Sensibility Neural Network
A maximum sensibility neural networks was implemented in an embedded system to make on-line learning. This neural network has advantages like easy implementation and a quick learning based on manage information in place of a gradient algorithm. The embedded maximum sensibility neural network was used to learn non linear functions on-line using potentiometers and a push button giving the function of activation and learning. The results give us a platform to apply on-line learning using neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信