基于小生境遗传算法和禁忌搜索的混合策略及其收敛性

Zhiyong Li, Houfu Li, Youwen Chen, Ahmed Sallam
{"title":"基于小生境遗传算法和禁忌搜索的混合策略及其收敛性","authors":"Zhiyong Li, Houfu Li, Youwen Chen, Ahmed Sallam","doi":"10.1109/BICTA.2010.5645306","DOIUrl":null,"url":null,"abstract":"Genetic algorithm and Tabu search algorithm are powerful tools to solve complex large-scale optimization problems. To deal with the prematurity and low convergence speed problems when the genetic algorithm being used for global optimization, we introduce a hybrid optimization algorithm through comprehensive contrast and comparison between the above two algorithms. In our approach, we use Tabu search algorithm for local search in order to speed up convergence speed and get satisfied results, and we use Genetic algorithm for global search, and we import niche to control prematurity and to avoid the converging to a local optimum. The convergence analysis manifests that the proposed algorithm converges to the global optimal value with probability 1, and the excremental results show that both calculations speed and output are improved.","PeriodicalId":302619,"journal":{"name":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A hybrid strategy based on niche genetic algorithm and Tabu search and its convergence property\",\"authors\":\"Zhiyong Li, Houfu Li, Youwen Chen, Ahmed Sallam\",\"doi\":\"10.1109/BICTA.2010.5645306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genetic algorithm and Tabu search algorithm are powerful tools to solve complex large-scale optimization problems. To deal with the prematurity and low convergence speed problems when the genetic algorithm being used for global optimization, we introduce a hybrid optimization algorithm through comprehensive contrast and comparison between the above two algorithms. In our approach, we use Tabu search algorithm for local search in order to speed up convergence speed and get satisfied results, and we use Genetic algorithm for global search, and we import niche to control prematurity and to avoid the converging to a local optimum. The convergence analysis manifests that the proposed algorithm converges to the global optimal value with probability 1, and the excremental results show that both calculations speed and output are improved.\",\"PeriodicalId\":302619,\"journal\":{\"name\":\"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BICTA.2010.5645306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2010.5645306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

遗传算法和禁忌搜索算法是解决复杂大规模优化问题的有力工具。针对遗传算法在进行全局优化时存在的早熟和收敛速度慢的问题,通过对两种算法的综合对比和比较,引入了一种混合优化算法。该方法采用禁忌搜索算法进行局部搜索,以加快收敛速度并得到满意的结果;采用遗传算法进行全局搜索,并引入小生境控制早熟,避免收敛到局部最优。收敛性分析表明,该算法收敛到全局最优值的概率为1,实验结果表明,该算法的计算速度和输出都得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid strategy based on niche genetic algorithm and Tabu search and its convergence property
Genetic algorithm and Tabu search algorithm are powerful tools to solve complex large-scale optimization problems. To deal with the prematurity and low convergence speed problems when the genetic algorithm being used for global optimization, we introduce a hybrid optimization algorithm through comprehensive contrast and comparison between the above two algorithms. In our approach, we use Tabu search algorithm for local search in order to speed up convergence speed and get satisfied results, and we use Genetic algorithm for global search, and we import niche to control prematurity and to avoid the converging to a local optimum. The convergence analysis manifests that the proposed algorithm converges to the global optimal value with probability 1, and the excremental results show that both calculations speed and output are improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信