面向大数据的高效空间查询处理

Kisung Lee, R. Ganti, M. Srivatsa, Ling Liu
{"title":"面向大数据的高效空间查询处理","authors":"Kisung Lee, R. Ganti, M. Srivatsa, Ling Liu","doi":"10.1145/2666310.2666481","DOIUrl":null,"url":null,"abstract":"Spatial queries are widely used in many data mining and analytics applications. However, a huge and growing size of spatial data makes it challenging to process the spatial queries efficiently. In this paper we present a lightweight and scalable spatial index for big data stored in distributed storage systems. Experimental results show the efficiency and effectiveness of our spatial indexing technique for different spatial queries.","PeriodicalId":153031,"journal":{"name":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Efficient spatial query processing for big data\",\"authors\":\"Kisung Lee, R. Ganti, M. Srivatsa, Ling Liu\",\"doi\":\"10.1145/2666310.2666481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial queries are widely used in many data mining and analytics applications. However, a huge and growing size of spatial data makes it challenging to process the spatial queries efficiently. In this paper we present a lightweight and scalable spatial index for big data stored in distributed storage systems. Experimental results show the efficiency and effectiveness of our spatial indexing technique for different spatial queries.\",\"PeriodicalId\":153031,\"journal\":{\"name\":\"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2666310.2666481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2666310.2666481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

摘要

空间查询广泛应用于许多数据挖掘和分析应用中。然而,空间数据的巨大和不断增长的规模给空间查询的有效处理带来了挑战。本文提出了一种轻量级、可扩展的分布式存储系统大数据空间索引。实验结果表明,本文提出的空间索引技术对不同的空间查询具有较高的效率和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient spatial query processing for big data
Spatial queries are widely used in many data mining and analytics applications. However, a huge and growing size of spatial data makes it challenging to process the spatial queries efficiently. In this paper we present a lightweight and scalable spatial index for big data stored in distributed storage systems. Experimental results show the efficiency and effectiveness of our spatial indexing technique for different spatial queries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信