基于复杂网络理论的电力系统暂态稳定分析

Liang Wu, H. Pota, Zihao Zhao
{"title":"基于复杂网络理论的电力系统暂态稳定分析","authors":"Liang Wu, H. Pota, Zihao Zhao","doi":"10.1109/PECON.2016.7951625","DOIUrl":null,"url":null,"abstract":"This paper investigates the transient stability of power systems under the framework of complex network theory. The studied power system is assumed to be singularly perturbed so that the corresponding reduced-order system is a Kuramoto-oscillator system in complex network theory. A condition is presented to guarantee the bounded synchronization of reduced system with an arbitrary topology so that the original system is transiently stable. The effectiveness of this condition is verified by simulation results on IEEE 57-bus and 118-bus power systems.","PeriodicalId":259969,"journal":{"name":"2016 IEEE International Conference on Power and Energy (PECon)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transient stability analysis of power system based on complex network theory\",\"authors\":\"Liang Wu, H. Pota, Zihao Zhao\",\"doi\":\"10.1109/PECON.2016.7951625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the transient stability of power systems under the framework of complex network theory. The studied power system is assumed to be singularly perturbed so that the corresponding reduced-order system is a Kuramoto-oscillator system in complex network theory. A condition is presented to guarantee the bounded synchronization of reduced system with an arbitrary topology so that the original system is transiently stable. The effectiveness of this condition is verified by simulation results on IEEE 57-bus and 118-bus power systems.\",\"PeriodicalId\":259969,\"journal\":{\"name\":\"2016 IEEE International Conference on Power and Energy (PECon)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Power and Energy (PECon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PECON.2016.7951625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Power and Energy (PECon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECON.2016.7951625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文在复杂网络理论的框架下研究了电力系统的暂态稳定问题。所研究的电力系统被假设为奇摄动,因此在复杂网络理论中,相应的降阶系统是一个仓本振子系统。给出了一个保证任意拓扑简化系统有界同步的条件,使原系统暂态稳定。在IEEE 57总线和118总线电力系统上的仿真结果验证了该条件的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transient stability analysis of power system based on complex network theory
This paper investigates the transient stability of power systems under the framework of complex network theory. The studied power system is assumed to be singularly perturbed so that the corresponding reduced-order system is a Kuramoto-oscillator system in complex network theory. A condition is presented to guarantee the bounded synchronization of reduced system with an arbitrary topology so that the original system is transiently stable. The effectiveness of this condition is verified by simulation results on IEEE 57-bus and 118-bus power systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信