基于序贯高效全局优化的时变可靠性分析二阶可靠度方法

Zhangli Hu, Xiaoping Du
{"title":"基于序贯高效全局优化的时变可靠性分析二阶可靠度方法","authors":"Zhangli Hu, Xiaoping Du","doi":"10.1115/detc2019-97541","DOIUrl":null,"url":null,"abstract":"\n Reliability depends on time if the associated limit-state function includes time. A time-dependent reliability problem can be converted into a time-independent reliability problem by using the extreme value of the limit-state function. Then the first order reliability method can be used but it may produce a large error since the extreme limit-state function is usually highly nonlinear. This study proposes a new reliability method so that the second order reliability method can be applied to time-dependent reliability analysis for higher accuracy while maintaining high efficiency. The method employs sequential efficient global optimization to transform the time-dependent reliability analysis into the time-independent problem. The Hessian approximation and envelope theorem are used to obtain the second order information of the extreme limit-state function. Then the second order saddlepoint approximation is use to evaluate the reliability. The accuracy and efficiency of the proposed method are verified through numerical examples.","PeriodicalId":198662,"journal":{"name":"Volume 2B: 45th Design Automation Conference","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Second Order Reliability Method for Time-Dependent Reliability Analysis Using Sequential Efficient Global Optimization\",\"authors\":\"Zhangli Hu, Xiaoping Du\",\"doi\":\"10.1115/detc2019-97541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Reliability depends on time if the associated limit-state function includes time. A time-dependent reliability problem can be converted into a time-independent reliability problem by using the extreme value of the limit-state function. Then the first order reliability method can be used but it may produce a large error since the extreme limit-state function is usually highly nonlinear. This study proposes a new reliability method so that the second order reliability method can be applied to time-dependent reliability analysis for higher accuracy while maintaining high efficiency. The method employs sequential efficient global optimization to transform the time-dependent reliability analysis into the time-independent problem. The Hessian approximation and envelope theorem are used to obtain the second order information of the extreme limit-state function. Then the second order saddlepoint approximation is use to evaluate the reliability. The accuracy and efficiency of the proposed method are verified through numerical examples.\",\"PeriodicalId\":198662,\"journal\":{\"name\":\"Volume 2B: 45th Design Automation Conference\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2B: 45th Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-97541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2B: 45th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

如果关联的极限状态函数包含时间,则可靠性取决于时间。利用极限状态函数的极值可以将时变可靠性问题转化为时变可靠性问题。此时可以采用一阶可靠度法,但由于极限状态函数通常是高度非线性的,因而误差较大。本文提出了一种新的可靠度方法,使二阶可靠度方法可以应用于时变可靠性分析,在保持高效率的同时提高了可靠性分析的精度。该方法采用序贯高效全局优化方法,将时变可靠性分析转化为时变可靠性分析。利用Hessian近似和包络定理得到了极值极限状态函数的二阶信息。然后利用二阶鞍点逼近法对系统的可靠性进行评估。通过算例验证了该方法的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Second Order Reliability Method for Time-Dependent Reliability Analysis Using Sequential Efficient Global Optimization
Reliability depends on time if the associated limit-state function includes time. A time-dependent reliability problem can be converted into a time-independent reliability problem by using the extreme value of the limit-state function. Then the first order reliability method can be used but it may produce a large error since the extreme limit-state function is usually highly nonlinear. This study proposes a new reliability method so that the second order reliability method can be applied to time-dependent reliability analysis for higher accuracy while maintaining high efficiency. The method employs sequential efficient global optimization to transform the time-dependent reliability analysis into the time-independent problem. The Hessian approximation and envelope theorem are used to obtain the second order information of the extreme limit-state function. Then the second order saddlepoint approximation is use to evaluate the reliability. The accuracy and efficiency of the proposed method are verified through numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信