{"title":"了解和减轻内存系统中芯片内部和dimm内部参数的变化","authors":"Meysam Taassori, Ali Shafiee, R. Balasubramonian","doi":"10.1109/ICCD.2016.7753283","DOIUrl":null,"url":null,"abstract":"Continued process scaling must overcome several manufacturing challenges. At the same time, industry is exploring many new memory technologies that require new manufacturing processes. In such challenging fabrication regimes, parameter variation (PV) and yield will be important problems. While many recent bodies of work have targeted PV in processors, few have targeted PV in the memory system. Mitigation techniques have either focused on refresh, or have focused on inter-die variation. In this work, with empirical measurements, we first show that PV and specifically intra-die PV is indeed a real phenomenon in modern DRAM chips. We show that this intra-die PV can impact timing parameters for different banks within a DRAM chip. In response to growing PV, memory timing parameters will likely be set very conservatively to accommodate the worst case. To overcome these worst-case limitations, we propose the design of a reconfigurable memory module that detects PV in the field and organizes the memory system into fast/slow regions. This requires changes to the memory controller and to buffer chips on DIMMs. Further, OS migration policies can move frequently accessed pages to the fast regions. This overall approach not only improves performance and energy, it also provides a configurable platform for systems that can tolerate errors or approximation. The proposed system yields an average performance improvement of 12.6% in DRAM systems, and 25.5% in NVM systems.","PeriodicalId":297899,"journal":{"name":"2016 IEEE 34th International Conference on Computer Design (ICCD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Understanding and alleviating intra-die and intra-DIMM parameter variation in the memory system\",\"authors\":\"Meysam Taassori, Ali Shafiee, R. Balasubramonian\",\"doi\":\"10.1109/ICCD.2016.7753283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continued process scaling must overcome several manufacturing challenges. At the same time, industry is exploring many new memory technologies that require new manufacturing processes. In such challenging fabrication regimes, parameter variation (PV) and yield will be important problems. While many recent bodies of work have targeted PV in processors, few have targeted PV in the memory system. Mitigation techniques have either focused on refresh, or have focused on inter-die variation. In this work, with empirical measurements, we first show that PV and specifically intra-die PV is indeed a real phenomenon in modern DRAM chips. We show that this intra-die PV can impact timing parameters for different banks within a DRAM chip. In response to growing PV, memory timing parameters will likely be set very conservatively to accommodate the worst case. To overcome these worst-case limitations, we propose the design of a reconfigurable memory module that detects PV in the field and organizes the memory system into fast/slow regions. This requires changes to the memory controller and to buffer chips on DIMMs. Further, OS migration policies can move frequently accessed pages to the fast regions. This overall approach not only improves performance and energy, it also provides a configurable platform for systems that can tolerate errors or approximation. The proposed system yields an average performance improvement of 12.6% in DRAM systems, and 25.5% in NVM systems.\",\"PeriodicalId\":297899,\"journal\":{\"name\":\"2016 IEEE 34th International Conference on Computer Design (ICCD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 34th International Conference on Computer Design (ICCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2016.7753283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 34th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2016.7753283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Understanding and alleviating intra-die and intra-DIMM parameter variation in the memory system
Continued process scaling must overcome several manufacturing challenges. At the same time, industry is exploring many new memory technologies that require new manufacturing processes. In such challenging fabrication regimes, parameter variation (PV) and yield will be important problems. While many recent bodies of work have targeted PV in processors, few have targeted PV in the memory system. Mitigation techniques have either focused on refresh, or have focused on inter-die variation. In this work, with empirical measurements, we first show that PV and specifically intra-die PV is indeed a real phenomenon in modern DRAM chips. We show that this intra-die PV can impact timing parameters for different banks within a DRAM chip. In response to growing PV, memory timing parameters will likely be set very conservatively to accommodate the worst case. To overcome these worst-case limitations, we propose the design of a reconfigurable memory module that detects PV in the field and organizes the memory system into fast/slow regions. This requires changes to the memory controller and to buffer chips on DIMMs. Further, OS migration policies can move frequently accessed pages to the fast regions. This overall approach not only improves performance and energy, it also provides a configurable platform for systems that can tolerate errors or approximation. The proposed system yields an average performance improvement of 12.6% in DRAM systems, and 25.5% in NVM systems.