排距对膜冷却叠加法精度的影响

Lang Wang, Xueying Li, Jing Ren, Hongde Jiang
{"title":"排距对膜冷却叠加法精度的影响","authors":"Lang Wang, Xueying Li, Jing Ren, Hongde Jiang","doi":"10.1115/GT2018-76421","DOIUrl":null,"url":null,"abstract":"Film cooling technique is widely used in a modern gas turbine. Many applications in hot sections require multiple film cooling rows to get better cooled. In most situation, the additive effect is computed using Sellers superposition method, but it is not accurate when the hole rows are close to each other. In this paper, row spacing between two rows of cooling hole was investigated by numerical method, which was validated by PSP results. The validation experiments are performed on flat test bench and the freestream is maintained at 25m/s. The inlet boundary conditions of numerical simulations were same with the experiment. Both round hole and shaped hole were investigated at blowing ratio M = 0.5, density ratios DR = 1.5 and row spacing S/D = 6, 10, 15, 20. It is found that the round hole results by Sellers method are similar to experiment results only at large row spacing, and the results of Sellers are always higher than experimental results. The boundary layer has a big effect on cooling effectiveness for round hole, but very little effect on shaped hole. When the row spacing increase, the difference between experiment and prediction become smaller. The vortex is the major factor to effect the accuracy of superposition method.","PeriodicalId":239866,"journal":{"name":"Volume 5C: Heat Transfer","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Effect of Row Spacing on the Accuracy of Film Cooling Superposition Method\",\"authors\":\"Lang Wang, Xueying Li, Jing Ren, Hongde Jiang\",\"doi\":\"10.1115/GT2018-76421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Film cooling technique is widely used in a modern gas turbine. Many applications in hot sections require multiple film cooling rows to get better cooled. In most situation, the additive effect is computed using Sellers superposition method, but it is not accurate when the hole rows are close to each other. In this paper, row spacing between two rows of cooling hole was investigated by numerical method, which was validated by PSP results. The validation experiments are performed on flat test bench and the freestream is maintained at 25m/s. The inlet boundary conditions of numerical simulations were same with the experiment. Both round hole and shaped hole were investigated at blowing ratio M = 0.5, density ratios DR = 1.5 and row spacing S/D = 6, 10, 15, 20. It is found that the round hole results by Sellers method are similar to experiment results only at large row spacing, and the results of Sellers are always higher than experimental results. The boundary layer has a big effect on cooling effectiveness for round hole, but very little effect on shaped hole. When the row spacing increase, the difference between experiment and prediction become smaller. The vortex is the major factor to effect the accuracy of superposition method.\",\"PeriodicalId\":239866,\"journal\":{\"name\":\"Volume 5C: Heat Transfer\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5C: Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2018-76421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5C: Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2018-76421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

气膜冷却技术在现代燃气轮机中得到广泛应用。许多应用在热段需要多个膜冷却排得到更好的冷却。在大多数情况下,加性效应是用Sellers叠加法来计算的,但当孔排彼此靠近时,加性效应是不准确的。本文采用数值方法对两排冷却孔之间的排距进行了研究,并得到了PSP结果的验证。验证实验在平面实验台上进行,自由流保持在25m/s。数值模拟的进气道边界条件与实验结果一致。在吹气比M = 0.5,密度比DR = 1.5,排距S/D = 6、10、15、20的条件下,对圆孔和形孔进行了研究。研究发现,只有在大行距条件下,Sellers方法得到的圆孔结果与实验结果相似,且Sellers方法得到的圆孔结果总是高于实验结果。边界层对圆孔的冷却效果影响较大,而对形孔的冷却效果影响较小。当行间距增大时,实验值与预测值的差值变小。涡旋是影响叠加法精度的主要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Row Spacing on the Accuracy of Film Cooling Superposition Method
Film cooling technique is widely used in a modern gas turbine. Many applications in hot sections require multiple film cooling rows to get better cooled. In most situation, the additive effect is computed using Sellers superposition method, but it is not accurate when the hole rows are close to each other. In this paper, row spacing between two rows of cooling hole was investigated by numerical method, which was validated by PSP results. The validation experiments are performed on flat test bench and the freestream is maintained at 25m/s. The inlet boundary conditions of numerical simulations were same with the experiment. Both round hole and shaped hole were investigated at blowing ratio M = 0.5, density ratios DR = 1.5 and row spacing S/D = 6, 10, 15, 20. It is found that the round hole results by Sellers method are similar to experiment results only at large row spacing, and the results of Sellers are always higher than experimental results. The boundary layer has a big effect on cooling effectiveness for round hole, but very little effect on shaped hole. When the row spacing increase, the difference between experiment and prediction become smaller. The vortex is the major factor to effect the accuracy of superposition method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信