{"title":"单小区IEEE 802.11无线局域网中可变长度数据包的应用延迟建模","authors":"Albert Sunny, J. Kuri, Saurabh Aggarwal","doi":"10.1109/NCC.2011.5734785","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of modelling the average delay experienced by an application packets of variable length in a single cell IEEE 802.11 DCF wireless local area network. The packet arrival process at each node i is assumed to be a stationary and independent increment random process with mean ai and second moment ai(2). The packet lengths at node i are assumed to be i.i.d random variables Pi with finite mean and second moment. A closed form expression has been derived for the same. We assume the input arrival process across queues to be uncorrelated Poison processes. As the nodes share a single channel, they have to contend with one another for a successful transmission. The mean delay for a packet has been approximated by modelling the system as a 1-limited Random Polling system with zero switchover times. Extensive simulations are conducted to verify the analytical results.","PeriodicalId":158295,"journal":{"name":"2011 National Conference on Communications (NCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application delay modelling for variable length packets in single cell IEEE 802.11 WLANs\",\"authors\":\"Albert Sunny, J. Kuri, Saurabh Aggarwal\",\"doi\":\"10.1109/NCC.2011.5734785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the problem of modelling the average delay experienced by an application packets of variable length in a single cell IEEE 802.11 DCF wireless local area network. The packet arrival process at each node i is assumed to be a stationary and independent increment random process with mean ai and second moment ai(2). The packet lengths at node i are assumed to be i.i.d random variables Pi with finite mean and second moment. A closed form expression has been derived for the same. We assume the input arrival process across queues to be uncorrelated Poison processes. As the nodes share a single channel, they have to contend with one another for a successful transmission. The mean delay for a packet has been approximated by modelling the system as a 1-limited Random Polling system with zero switchover times. Extensive simulations are conducted to verify the analytical results.\",\"PeriodicalId\":158295,\"journal\":{\"name\":\"2011 National Conference on Communications (NCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2011.5734785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2011.5734785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application delay modelling for variable length packets in single cell IEEE 802.11 WLANs
In this paper, we consider the problem of modelling the average delay experienced by an application packets of variable length in a single cell IEEE 802.11 DCF wireless local area network. The packet arrival process at each node i is assumed to be a stationary and independent increment random process with mean ai and second moment ai(2). The packet lengths at node i are assumed to be i.i.d random variables Pi with finite mean and second moment. A closed form expression has been derived for the same. We assume the input arrival process across queues to be uncorrelated Poison processes. As the nodes share a single channel, they have to contend with one another for a successful transmission. The mean delay for a packet has been approximated by modelling the system as a 1-limited Random Polling system with zero switchover times. Extensive simulations are conducted to verify the analytical results.