{"title":"基于多传感器数据融合的过程监测系统实验研究","authors":"Qian Xiang, Z. Lu, Bei-Zhi Li, Jian-guo Yang","doi":"10.1109/URKE.2012.6319578","DOIUrl":null,"url":null,"abstract":"Multi-sensor data fusion is a technology to enable combining information from several sources in order to form a unified picture. Focusing on the indirect method, an attempt was made to build up a multi-sensor data fusion system to monitor the condition of grinding wheels with force signals and the acoustic emission (AE) signals. An artificial immune algorithm based multi-signals processing method was presented in this paper. The intelligent monitoring system is capable of incremental supervised learning of grinding conditions and quickly pattern recognition, and can continually improve the monitoring precision. The experiment indicates that the accuracy of condition identification is about 87%, and able to meet the industrial need on the whole.","PeriodicalId":277189,"journal":{"name":"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A process monitoring system based on multi-sensor data fusion: An experiment study\",\"authors\":\"Qian Xiang, Z. Lu, Bei-Zhi Li, Jian-guo Yang\",\"doi\":\"10.1109/URKE.2012.6319578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-sensor data fusion is a technology to enable combining information from several sources in order to form a unified picture. Focusing on the indirect method, an attempt was made to build up a multi-sensor data fusion system to monitor the condition of grinding wheels with force signals and the acoustic emission (AE) signals. An artificial immune algorithm based multi-signals processing method was presented in this paper. The intelligent monitoring system is capable of incremental supervised learning of grinding conditions and quickly pattern recognition, and can continually improve the monitoring precision. The experiment indicates that the accuracy of condition identification is about 87%, and able to meet the industrial need on the whole.\",\"PeriodicalId\":277189,\"journal\":{\"name\":\"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URKE.2012.6319578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URKE.2012.6319578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A process monitoring system based on multi-sensor data fusion: An experiment study
Multi-sensor data fusion is a technology to enable combining information from several sources in order to form a unified picture. Focusing on the indirect method, an attempt was made to build up a multi-sensor data fusion system to monitor the condition of grinding wheels with force signals and the acoustic emission (AE) signals. An artificial immune algorithm based multi-signals processing method was presented in this paper. The intelligent monitoring system is capable of incremental supervised learning of grinding conditions and quickly pattern recognition, and can continually improve the monitoring precision. The experiment indicates that the accuracy of condition identification is about 87%, and able to meet the industrial need on the whole.