基于广义霍夫变换的x射线图像中颈椎的半自动检测

M. A. Larhmam, S. Mahmoudi, M. Benjelloun
{"title":"基于广义霍夫变换的x射线图像中颈椎的半自动检测","authors":"M. A. Larhmam, S. Mahmoudi, M. Benjelloun","doi":"10.1109/IPTA.2012.6469570","DOIUrl":null,"url":null,"abstract":"Vertebra detection presents the first step of any automatic spinal column diagnosis. This task becomes more difficult in the case of the cervical X-ray images characterized by their low contrasts and noise due to skull bones. In this paper, we describe an efficient modified template matching method for detecting cervical vertebrae using Generalized Hough Transform (GHT). The proposed method consists of three main steps toward vertebrae detection: 1) Offline training to obtain a robust average model of cervical vertebra. 2) Detecting the potential vertebra centers. 3) Adaptive Post-processing filter. X-ray Image data of 40 healthy cases were used to validate our approach by using a total of 200 cervical vertebrae. We obtained an accuracy of 89%.","PeriodicalId":267290,"journal":{"name":"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Semi-automatic detection of cervical vertebrae in X-ray images using generalized hough transform\",\"authors\":\"M. A. Larhmam, S. Mahmoudi, M. Benjelloun\",\"doi\":\"10.1109/IPTA.2012.6469570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vertebra detection presents the first step of any automatic spinal column diagnosis. This task becomes more difficult in the case of the cervical X-ray images characterized by their low contrasts and noise due to skull bones. In this paper, we describe an efficient modified template matching method for detecting cervical vertebrae using Generalized Hough Transform (GHT). The proposed method consists of three main steps toward vertebrae detection: 1) Offline training to obtain a robust average model of cervical vertebra. 2) Detecting the potential vertebra centers. 3) Adaptive Post-processing filter. X-ray Image data of 40 healthy cases were used to validate our approach by using a total of 200 cervical vertebrae. We obtained an accuracy of 89%.\",\"PeriodicalId\":267290,\"journal\":{\"name\":\"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2012.6469570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2012.6469570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

椎体检测是任何自动脊柱诊断的第一步。在颈椎x线图像的情况下,由于颅骨的低对比度和噪声,这项任务变得更加困难。本文提出了一种基于广义霍夫变换(GHT)的改进模板匹配检测颈椎的方法。本文提出的方法包括三个主要步骤:1)离线训练,获得鲁棒的颈椎平均模型。2)检测潜在椎体中心。3)自适应后处理滤波器。使用40例健康病例的x线图像数据,共使用200个颈椎来验证我们的方法。我们获得了89%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-automatic detection of cervical vertebrae in X-ray images using generalized hough transform
Vertebra detection presents the first step of any automatic spinal column diagnosis. This task becomes more difficult in the case of the cervical X-ray images characterized by their low contrasts and noise due to skull bones. In this paper, we describe an efficient modified template matching method for detecting cervical vertebrae using Generalized Hough Transform (GHT). The proposed method consists of three main steps toward vertebrae detection: 1) Offline training to obtain a robust average model of cervical vertebra. 2) Detecting the potential vertebra centers. 3) Adaptive Post-processing filter. X-ray Image data of 40 healthy cases were used to validate our approach by using a total of 200 cervical vertebrae. We obtained an accuracy of 89%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信