基于拉普拉斯的图像融合

J. Scott, M. Pusateri
{"title":"基于拉普拉斯的图像融合","authors":"J. Scott, M. Pusateri","doi":"10.1109/AIPR.2010.5759697","DOIUrl":null,"url":null,"abstract":"A fundamental goal in multispectral image fusion is to combine relevant information from multiple spectral ranges while displaying a constant amount of data as a single channel. Because we expect synergy between the views afforded by different parts of the spectrum, producing output imagery with increased information beyond any of the individual imagery sounds simple. While fusion algorithms achieve synergy under specific scenarios, it is often the case that they produce imagery with less information than any single band of imagery. Losses can arise from any number of problems including poor imagery in one band degrading the fusion result, loss of details from intrinsic smoothing, artifacts or discontinuities from discrete mixing, and distracting colors from unnatural color mapping. We have been developing and testing fusion algorithms with the goal of achieving synergy under a wider range of scenarios. This technique has been very successful in the worlds of image blending, mosaics, and image compositing for visible band imagery. The algorithm presented in this paper is based on direct pixel-wise fusion that merges the directional discrete laplacian content of individual imagery bands rather than the intensities directly. The laplacian captures the local difference in the four-connected neighborhood. The laplacian of each image is then mixed based on the premise that image edges contain the most pertinent information from each input image. This information is then reformed into an image by solving the two-dimensional Poisson equation. The preliminary results are promising and consistent. When fusing multiple continuous visible channels, the resulting image is similar to grayscale imaging over all of the visible channels. When fusing discontinuous and/or non-visible channels, the resulting image is subtly mixed and intuitive to understand.","PeriodicalId":128378,"journal":{"name":"2010 IEEE 39th Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Laplacian based image fusion\",\"authors\":\"J. Scott, M. Pusateri\",\"doi\":\"10.1109/AIPR.2010.5759697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fundamental goal in multispectral image fusion is to combine relevant information from multiple spectral ranges while displaying a constant amount of data as a single channel. Because we expect synergy between the views afforded by different parts of the spectrum, producing output imagery with increased information beyond any of the individual imagery sounds simple. While fusion algorithms achieve synergy under specific scenarios, it is often the case that they produce imagery with less information than any single band of imagery. Losses can arise from any number of problems including poor imagery in one band degrading the fusion result, loss of details from intrinsic smoothing, artifacts or discontinuities from discrete mixing, and distracting colors from unnatural color mapping. We have been developing and testing fusion algorithms with the goal of achieving synergy under a wider range of scenarios. This technique has been very successful in the worlds of image blending, mosaics, and image compositing for visible band imagery. The algorithm presented in this paper is based on direct pixel-wise fusion that merges the directional discrete laplacian content of individual imagery bands rather than the intensities directly. The laplacian captures the local difference in the four-connected neighborhood. The laplacian of each image is then mixed based on the premise that image edges contain the most pertinent information from each input image. This information is then reformed into an image by solving the two-dimensional Poisson equation. The preliminary results are promising and consistent. When fusing multiple continuous visible channels, the resulting image is similar to grayscale imaging over all of the visible channels. When fusing discontinuous and/or non-visible channels, the resulting image is subtly mixed and intuitive to understand.\",\"PeriodicalId\":128378,\"journal\":{\"name\":\"2010 IEEE 39th Applied Imagery Pattern Recognition Workshop (AIPR)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 39th Applied Imagery Pattern Recognition Workshop (AIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2010.5759697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 39th Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2010.5759697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

多光谱图像融合的一个基本目标是将多个光谱范围的相关信息组合在一起,同时以单一通道的形式显示一定量的数据。因为我们期望在不同光谱部分提供的视图之间产生协同作用,所以产生具有比任何单个图像更多信息的输出图像听起来很简单。虽然融合算法在特定场景下实现协同,但通常情况下,它们产生的图像比任何单一图像带的信息都少。损失可能由许多问题引起,包括一个波段的图像质量差,降低融合结果,固有平滑造成的细节损失,离散混合造成的伪影或不连续,以及不自然的颜色映射造成的颜色分散。我们一直在开发和测试融合算法,目标是在更广泛的场景下实现协同作用。这种技术在图像混合、马赛克和可见光波段图像合成领域非常成功。本文提出的算法是基于直接逐像素融合,它融合了单个图像波段的方向离散拉普拉斯内容,而不是直接融合强度。拉普拉斯函数捕获了四连通邻域中的局部差异。然后,基于图像边缘包含来自每个输入图像的最相关信息的前提,混合每个图像的拉普拉斯算子。然后,通过求解二维泊松方程,将这些信息重组为图像。初步结果是有希望的和一致的。当融合多个连续可见通道时,得到的图像类似于所有可见通道上的灰度成像。当融合不连续和/或不可见的通道时,得到的图像是微妙的混合和直观的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laplacian based image fusion
A fundamental goal in multispectral image fusion is to combine relevant information from multiple spectral ranges while displaying a constant amount of data as a single channel. Because we expect synergy between the views afforded by different parts of the spectrum, producing output imagery with increased information beyond any of the individual imagery sounds simple. While fusion algorithms achieve synergy under specific scenarios, it is often the case that they produce imagery with less information than any single band of imagery. Losses can arise from any number of problems including poor imagery in one band degrading the fusion result, loss of details from intrinsic smoothing, artifacts or discontinuities from discrete mixing, and distracting colors from unnatural color mapping. We have been developing and testing fusion algorithms with the goal of achieving synergy under a wider range of scenarios. This technique has been very successful in the worlds of image blending, mosaics, and image compositing for visible band imagery. The algorithm presented in this paper is based on direct pixel-wise fusion that merges the directional discrete laplacian content of individual imagery bands rather than the intensities directly. The laplacian captures the local difference in the four-connected neighborhood. The laplacian of each image is then mixed based on the premise that image edges contain the most pertinent information from each input image. This information is then reformed into an image by solving the two-dimensional Poisson equation. The preliminary results are promising and consistent. When fusing multiple continuous visible channels, the resulting image is similar to grayscale imaging over all of the visible channels. When fusing discontinuous and/or non-visible channels, the resulting image is subtly mixed and intuitive to understand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信