作物产量分布的密度-比模型

Y. Zhang
{"title":"作物产量分布的密度-比模型","authors":"Y. Zhang","doi":"10.2139/ssrn.2640625","DOIUrl":null,"url":null,"abstract":"This paper proposes a density ratio estimator of crop yield distributions, wherein the number of observations for individual distributions is often quite small. The density ratio approach models individual densities as distortions from a common baseline density. We introduce a probability integral transformation to the density ratio method that simplifies the modeling of distortion functions. We further present an implementation approach based on the Poisson regression, which facilitates model estimation and diagnostics. Monte Carlo simulations demonstrate good finite sample performance of the proposed method. We apply this method to estimate the corn yield distributions of 99 Iowa counties and calculate crop insurance premiums. Lastly we illustrate that we can employ the proposed method to effectively identify profitable insurance policies.","PeriodicalId":107048,"journal":{"name":"Food Industry eJournal","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Density-Ratio Model of Crop Yield Distributions\",\"authors\":\"Y. Zhang\",\"doi\":\"10.2139/ssrn.2640625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a density ratio estimator of crop yield distributions, wherein the number of observations for individual distributions is often quite small. The density ratio approach models individual densities as distortions from a common baseline density. We introduce a probability integral transformation to the density ratio method that simplifies the modeling of distortion functions. We further present an implementation approach based on the Poisson regression, which facilitates model estimation and diagnostics. Monte Carlo simulations demonstrate good finite sample performance of the proposed method. We apply this method to estimate the corn yield distributions of 99 Iowa counties and calculate crop insurance premiums. Lastly we illustrate that we can employ the proposed method to effectively identify profitable insurance policies.\",\"PeriodicalId\":107048,\"journal\":{\"name\":\"Food Industry eJournal\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Industry eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2640625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Industry eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2640625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种作物产量分布的密度比估计器,其中单个分布的观测数往往很小。密度比方法将单个密度建模为共同基线密度的扭曲。在密度比法中引入概率积分变换,简化了畸变函数的建模。我们进一步提出了一种基于泊松回归的实现方法,这有助于模型估计和诊断。蒙特卡罗仿真证明了该方法具有良好的有限样本性能。我们运用该方法估计了爱荷华州99个县的玉米产量分布,并计算了作物保险费。最后,我们说明了我们可以使用该方法有效地识别有利可图的保单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Density-Ratio Model of Crop Yield Distributions
This paper proposes a density ratio estimator of crop yield distributions, wherein the number of observations for individual distributions is often quite small. The density ratio approach models individual densities as distortions from a common baseline density. We introduce a probability integral transformation to the density ratio method that simplifies the modeling of distortion functions. We further present an implementation approach based on the Poisson regression, which facilitates model estimation and diagnostics. Monte Carlo simulations demonstrate good finite sample performance of the proposed method. We apply this method to estimate the corn yield distributions of 99 Iowa counties and calculate crop insurance premiums. Lastly we illustrate that we can employ the proposed method to effectively identify profitable insurance policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信