Monero:无脚本加密货币Monero的快速支付通道网络

Zhimei Sui, Joseph K. Liu, Jiangshan Yu, Xianrui Qin
{"title":"Monero:无脚本加密货币Monero的快速支付通道网络","authors":"Zhimei Sui, Joseph K. Liu, Jiangshan Yu, Xianrui Qin","doi":"10.1109/ICDCS54860.2022.00035","DOIUrl":null,"url":null,"abstract":"We propose MoNet, the first bi-directional payment channel network with unlimited lifetime for Monero. It is fully compatible with Monero without requiring any modification of the current Monero blockchain. MoNet preserves transaction fungibility, i.e., transactions over MoNet and Monero are indistinguishable, and guarantees anonymity of Monero and MoNet users by avoiding any potential privacy leakage introduced by the new payment channel network. We also propose a new crypto primitive, named Verifiable Consecutive One-way Function (VCOF). It allows one to generate a sequence of statement-witness pairs in a consecutive and verifiable way, and these statement-witness pairs are one-way, namely it is easy to compute a statement-witness pair by knowing any of the pre-generated pairs, but hard in an opposite flow. By using VCOF, a signer can produce a series of consecutive adaptor signatures CAS. We further propose the generic construction of consecutive adaptor signature as an important building block of MoNet. We develop a proof-of-concept implementation for MoNet, and our evaluation shows that MoNet can reach the same transaction throughput as Lightning Network, the payment channel network for Bitcoin. Moreover, we provide a security analysis of MoNet under the Universal Composable (UC) security framework.","PeriodicalId":225883,"journal":{"name":"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MoNet: A Fast Payment Channel Network for Scriptless Cryptocurrency Monero\",\"authors\":\"Zhimei Sui, Joseph K. Liu, Jiangshan Yu, Xianrui Qin\",\"doi\":\"10.1109/ICDCS54860.2022.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose MoNet, the first bi-directional payment channel network with unlimited lifetime for Monero. It is fully compatible with Monero without requiring any modification of the current Monero blockchain. MoNet preserves transaction fungibility, i.e., transactions over MoNet and Monero are indistinguishable, and guarantees anonymity of Monero and MoNet users by avoiding any potential privacy leakage introduced by the new payment channel network. We also propose a new crypto primitive, named Verifiable Consecutive One-way Function (VCOF). It allows one to generate a sequence of statement-witness pairs in a consecutive and verifiable way, and these statement-witness pairs are one-way, namely it is easy to compute a statement-witness pair by knowing any of the pre-generated pairs, but hard in an opposite flow. By using VCOF, a signer can produce a series of consecutive adaptor signatures CAS. We further propose the generic construction of consecutive adaptor signature as an important building block of MoNet. We develop a proof-of-concept implementation for MoNet, and our evaluation shows that MoNet can reach the same transaction throughput as Lightning Network, the payment channel network for Bitcoin. Moreover, we provide a security analysis of MoNet under the Universal Composable (UC) security framework.\",\"PeriodicalId\":225883,\"journal\":{\"name\":\"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS54860.2022.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS54860.2022.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出MoNet, Monero第一个双向支付通道网络,具有无限生命周期。它与门罗币完全兼容,不需要对当前的门罗币区块链进行任何修改。MoNet保留了交易的可替代性,即通过MoNet和Monero进行的交易是不可区分的,并通过避免新支付通道网络引入的任何潜在隐私泄露来保证Monero和MoNet用户的匿名性。我们还提出了一种新的密码原语,称为可验证连续单向函数(VCOF)。它允许以连续和可验证的方式生成一系列陈述-见证对,并且这些陈述-见证对是单向的,即通过知道预生成的任何对来计算陈述-见证对很容易,但在相反的流程中很难。通过使用VCOF,签名者可以生成一系列连续的适配器签名CAS。我们进一步提出了连续适配器签名的通用构造,作为莫奈的重要组成部分。我们为MoNet开发了一个概念验证实现,我们的评估表明,MoNet可以达到与比特币支付通道网络闪电网络相同的交易吞吐量。此外,我们还在通用可组合(UC)安全框架下对莫奈进行了安全性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MoNet: A Fast Payment Channel Network for Scriptless Cryptocurrency Monero
We propose MoNet, the first bi-directional payment channel network with unlimited lifetime for Monero. It is fully compatible with Monero without requiring any modification of the current Monero blockchain. MoNet preserves transaction fungibility, i.e., transactions over MoNet and Monero are indistinguishable, and guarantees anonymity of Monero and MoNet users by avoiding any potential privacy leakage introduced by the new payment channel network. We also propose a new crypto primitive, named Verifiable Consecutive One-way Function (VCOF). It allows one to generate a sequence of statement-witness pairs in a consecutive and verifiable way, and these statement-witness pairs are one-way, namely it is easy to compute a statement-witness pair by knowing any of the pre-generated pairs, but hard in an opposite flow. By using VCOF, a signer can produce a series of consecutive adaptor signatures CAS. We further propose the generic construction of consecutive adaptor signature as an important building block of MoNet. We develop a proof-of-concept implementation for MoNet, and our evaluation shows that MoNet can reach the same transaction throughput as Lightning Network, the payment channel network for Bitcoin. Moreover, we provide a security analysis of MoNet under the Universal Composable (UC) security framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信