计算摄影

Ramesh Raskar, J. Tumblin
{"title":"计算摄影","authors":"Ramesh Raskar, J. Tumblin","doi":"10.1145/1198555.1198561","DOIUrl":null,"url":null,"abstract":"Computational photography combines plentiful computing, digital sensors, modern optics, actuators, probes and smart lights to escape the limitations of traditional film cameras and enables novel imaging applications. Unbounded dynamic range, variable focus, resolution, and depth of field, hints about shape, reflectance, and lighting, and new interactive forms of photos that are partly snapshots and partly videos are just some of the new applications found in Computational Photography. The computational techniques encompass methods from modification of imaging parameters during capture to sophisticated reconstructions from indirect measurements. We provide a practical guide to topics in image capture and manipulation methods for generating compelling pictures for computer graphics and for extracting scene properties for computer vision, with several examples. Many ideas in computational photography are still relatively new to digital artists and programmers and there is no upto-date reference text. A larger problem is that a multi-disciplinary field that combines ideas from computational methods and modern digital photography involves a steep learning curve. For example, photographers are not always familiar with advanced algorithms now emerging to capture high dynamic range images, but image processing researchers face difficulty in understanding the capture and noise issues in digital cameras. These topics, however, can be easily learned without extensive background. The goal of this STAR is to present both aspects in a compact form. The new capture methods include sophisticated sensors, electromechanical actuators and on-board processing. Examples include adaptation to sensed scene depth and illumination, taking multiple pictures by varying camera parameters or actively modifying the flash illumination parameters. A class of modern reconstruction methods is also emerging. The methods can achieve a ‘photomontage’ by optimally fusing information from multiple images, improve signal to noise ratio and extract scene features such as depth edges. The STAR briefly reviews fundamental topics in digital imaging and then provides a practical guide to underlying techniques beyond image processing such as gradient domain operations, graph cuts, bilateral filters and optimizations. The participants learn about topics in image capture and manipulation methods for generating compelling pictures for computer graphics and for extracting scene properties for computer vision, with several examples. We hope to provide enough fundamentals to satisfy the technical specialist without intimidating the curious graphics researcher interested in recent advances in photography. The intended audience is photographers, digital artists, image processing programmers and vision researchers using or building applications for digital cameras or images. They will learn about camera fundamentals and powerful computational tools, along with many real world examples.","PeriodicalId":192758,"journal":{"name":"ACM SIGGRAPH 2005 Courses","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Computational photography\",\"authors\":\"Ramesh Raskar, J. Tumblin\",\"doi\":\"10.1145/1198555.1198561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational photography combines plentiful computing, digital sensors, modern optics, actuators, probes and smart lights to escape the limitations of traditional film cameras and enables novel imaging applications. Unbounded dynamic range, variable focus, resolution, and depth of field, hints about shape, reflectance, and lighting, and new interactive forms of photos that are partly snapshots and partly videos are just some of the new applications found in Computational Photography. The computational techniques encompass methods from modification of imaging parameters during capture to sophisticated reconstructions from indirect measurements. We provide a practical guide to topics in image capture and manipulation methods for generating compelling pictures for computer graphics and for extracting scene properties for computer vision, with several examples. Many ideas in computational photography are still relatively new to digital artists and programmers and there is no upto-date reference text. A larger problem is that a multi-disciplinary field that combines ideas from computational methods and modern digital photography involves a steep learning curve. For example, photographers are not always familiar with advanced algorithms now emerging to capture high dynamic range images, but image processing researchers face difficulty in understanding the capture and noise issues in digital cameras. These topics, however, can be easily learned without extensive background. The goal of this STAR is to present both aspects in a compact form. The new capture methods include sophisticated sensors, electromechanical actuators and on-board processing. Examples include adaptation to sensed scene depth and illumination, taking multiple pictures by varying camera parameters or actively modifying the flash illumination parameters. A class of modern reconstruction methods is also emerging. The methods can achieve a ‘photomontage’ by optimally fusing information from multiple images, improve signal to noise ratio and extract scene features such as depth edges. The STAR briefly reviews fundamental topics in digital imaging and then provides a practical guide to underlying techniques beyond image processing such as gradient domain operations, graph cuts, bilateral filters and optimizations. The participants learn about topics in image capture and manipulation methods for generating compelling pictures for computer graphics and for extracting scene properties for computer vision, with several examples. We hope to provide enough fundamentals to satisfy the technical specialist without intimidating the curious graphics researcher interested in recent advances in photography. The intended audience is photographers, digital artists, image processing programmers and vision researchers using or building applications for digital cameras or images. They will learn about camera fundamentals and powerful computational tools, along with many real world examples.\",\"PeriodicalId\":192758,\"journal\":{\"name\":\"ACM SIGGRAPH 2005 Courses\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2005 Courses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1198555.1198561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2005 Courses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1198555.1198561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational photography
Computational photography combines plentiful computing, digital sensors, modern optics, actuators, probes and smart lights to escape the limitations of traditional film cameras and enables novel imaging applications. Unbounded dynamic range, variable focus, resolution, and depth of field, hints about shape, reflectance, and lighting, and new interactive forms of photos that are partly snapshots and partly videos are just some of the new applications found in Computational Photography. The computational techniques encompass methods from modification of imaging parameters during capture to sophisticated reconstructions from indirect measurements. We provide a practical guide to topics in image capture and manipulation methods for generating compelling pictures for computer graphics and for extracting scene properties for computer vision, with several examples. Many ideas in computational photography are still relatively new to digital artists and programmers and there is no upto-date reference text. A larger problem is that a multi-disciplinary field that combines ideas from computational methods and modern digital photography involves a steep learning curve. For example, photographers are not always familiar with advanced algorithms now emerging to capture high dynamic range images, but image processing researchers face difficulty in understanding the capture and noise issues in digital cameras. These topics, however, can be easily learned without extensive background. The goal of this STAR is to present both aspects in a compact form. The new capture methods include sophisticated sensors, electromechanical actuators and on-board processing. Examples include adaptation to sensed scene depth and illumination, taking multiple pictures by varying camera parameters or actively modifying the flash illumination parameters. A class of modern reconstruction methods is also emerging. The methods can achieve a ‘photomontage’ by optimally fusing information from multiple images, improve signal to noise ratio and extract scene features such as depth edges. The STAR briefly reviews fundamental topics in digital imaging and then provides a practical guide to underlying techniques beyond image processing such as gradient domain operations, graph cuts, bilateral filters and optimizations. The participants learn about topics in image capture and manipulation methods for generating compelling pictures for computer graphics and for extracting scene properties for computer vision, with several examples. We hope to provide enough fundamentals to satisfy the technical specialist without intimidating the curious graphics researcher interested in recent advances in photography. The intended audience is photographers, digital artists, image processing programmers and vision researchers using or building applications for digital cameras or images. They will learn about camera fundamentals and powerful computational tools, along with many real world examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信