分布式LQR中的策略评价

Zifan Wang, Yulong Gao, Si Wang, M. Zavlanos, A. Abate, K. Johansson
{"title":"分布式LQR中的策略评价","authors":"Zifan Wang, Yulong Gao, Si Wang, M. Zavlanos, A. Abate, K. Johansson","doi":"10.48550/arXiv.2303.13657","DOIUrl":null,"url":null,"abstract":"Distributional reinforcement learning (DRL) enhances the understanding of the effects of the randomness in the environment by letting agents learn the distribution of a random return, rather than its expected value as in standard RL. At the same time, a main challenge in DRL is that policy evaluation in DRL typically relies on the representation of the return distribution, which needs to be carefully designed. In this paper, we address this challenge for a special class of DRL problems that rely on linear quadratic regulator (LQR) for control, advocating for a new distributional approach to LQR, which we call \\emph{distributional LQR}. Specifically, we provide a closed-form expression of the distribution of the random return which, remarkably, is applicable to all exogenous disturbances on the dynamics, as long as they are independent and identically distributed (i.i.d.). While the proposed exact return distribution consists of infinitely many random variables, we show that this distribution can be approximated by a finite number of random variables, and the associated approximation error can be analytically bounded under mild assumptions. Using the approximate return distribution, we propose a zeroth-order policy gradient algorithm for risk-averse LQR using the Conditional Value at Risk (CVaR) as a measure of risk. Numerical experiments are provided to illustrate our theoretical results.","PeriodicalId":268449,"journal":{"name":"Conference on Learning for Dynamics & Control","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Policy Evaluation in Distributional LQR\",\"authors\":\"Zifan Wang, Yulong Gao, Si Wang, M. Zavlanos, A. Abate, K. Johansson\",\"doi\":\"10.48550/arXiv.2303.13657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributional reinforcement learning (DRL) enhances the understanding of the effects of the randomness in the environment by letting agents learn the distribution of a random return, rather than its expected value as in standard RL. At the same time, a main challenge in DRL is that policy evaluation in DRL typically relies on the representation of the return distribution, which needs to be carefully designed. In this paper, we address this challenge for a special class of DRL problems that rely on linear quadratic regulator (LQR) for control, advocating for a new distributional approach to LQR, which we call \\\\emph{distributional LQR}. Specifically, we provide a closed-form expression of the distribution of the random return which, remarkably, is applicable to all exogenous disturbances on the dynamics, as long as they are independent and identically distributed (i.i.d.). While the proposed exact return distribution consists of infinitely many random variables, we show that this distribution can be approximated by a finite number of random variables, and the associated approximation error can be analytically bounded under mild assumptions. Using the approximate return distribution, we propose a zeroth-order policy gradient algorithm for risk-averse LQR using the Conditional Value at Risk (CVaR) as a measure of risk. Numerical experiments are provided to illustrate our theoretical results.\",\"PeriodicalId\":268449,\"journal\":{\"name\":\"Conference on Learning for Dynamics & Control\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Learning for Dynamics & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2303.13657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Learning for Dynamics & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.13657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

分布式强化学习(DRL)通过让智能体学习随机回报的分布,而不是像标准强化学习那样学习其期望值,增强了对环境中随机性影响的理解。同时,DRL的一个主要挑战是DRL中的政策评估通常依赖于回报分布的表示,需要仔细设计。在本文中,我们针对一类依赖线性二次调节器(LQR)进行控制的特殊DRL问题解决了这一挑战,提倡一种新的LQR分布方法,我们称之为\emph{分布LQR}。具体地说,我们提供了随机收益分布的一个封闭形式表达式,值得注意的是,它适用于动力学上的所有外源干扰,只要它们是独立和同分布的(i.i.d)。虽然所提出的精确返回分布由无限多个随机变量组成,但我们证明了该分布可以由有限数量的随机变量近似,并且在温和假设下,相关的近似误差可以解析地有界。利用近似收益分布,我们提出了一种零阶策略梯度算法,用于风险规避LQR,使用条件风险值(CVaR)作为风险度量。数值实验证明了我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Policy Evaluation in Distributional LQR
Distributional reinforcement learning (DRL) enhances the understanding of the effects of the randomness in the environment by letting agents learn the distribution of a random return, rather than its expected value as in standard RL. At the same time, a main challenge in DRL is that policy evaluation in DRL typically relies on the representation of the return distribution, which needs to be carefully designed. In this paper, we address this challenge for a special class of DRL problems that rely on linear quadratic regulator (LQR) for control, advocating for a new distributional approach to LQR, which we call \emph{distributional LQR}. Specifically, we provide a closed-form expression of the distribution of the random return which, remarkably, is applicable to all exogenous disturbances on the dynamics, as long as they are independent and identically distributed (i.i.d.). While the proposed exact return distribution consists of infinitely many random variables, we show that this distribution can be approximated by a finite number of random variables, and the associated approximation error can be analytically bounded under mild assumptions. Using the approximate return distribution, we propose a zeroth-order policy gradient algorithm for risk-averse LQR using the Conditional Value at Risk (CVaR) as a measure of risk. Numerical experiments are provided to illustrate our theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信